

DEVELOPMENT OF ALUMINA FORMING MATERIALS FOR CORROSION MITIGATION IN HEAVY LIQUID METAL COOLED NUCLEAR REACTORS

A. Weisenburger, H. Shi, A. Jianu, A. Heinzel, R. Fetzer, W. An, S. Schlabach, V. Szabo and G. Müller – KIT

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Steel corrosion in liquid Pb-alloys

Solubility of elements in Pb/PbBi → Dissolution attack - corrosion

1.4970 steel exposed to LBE at 600°C

Way Out: insoluble materials (W, Mo, .., ceramics)

or

like e.g. in atmospheric conditions – protection by oxide scales growing in the media

Mitigation of steel corrosion in liquid Pb-alloys

f/m steel at 550°C in LBE

? more stable Oxides – larger enthalpy of oxide formation?

Slow diffusion of elements through scale

Mitigation of steel corrosion in liquid Pb-alloys

f/m steel at 550°C in LBE

? more stable Oxides – larger enthalpy of oxide formation?

Slow diffusion of elements through scale

IAEA Technical meeting on structural materials for heavy liquid metal cooled fast reactors, Vienna, 15-17 October

Steel corrosion in liquid Pb-alloys

Austenitic steels can be used up to 450°C Oxygen content >10⁻⁷wt% required → Higher T or lower oxygen content

→ Advanced mitigation strategies

In-situ formed Al_2O_3 as protective oxides scale

 AI_2O_3 is very stable oxide - standard free energy of formation Diffusion in AI_2O_3 very slow

- → slowly growing oxide scale
- ➔ perfect barrier

No interaction with Pb-alloys

Reservoir layer – self healing

Not a coating: either **surface alloy** or **bulk**

Proven at other high temperature applications

AI - containing surface alloys

The procedure consists in two steps:

- (i) coating the surface steel with AI or AI containing alloy (Fe-Cr-AI system)
- (ii) melting the coating and the surface layer of the steel using intense pulsed electron beams (GESA process Karlsruhe Institute of Technology).

GESA treatment leads to:

metallic bonding – pore removal – surface smoothening and reduced AI content

Steel surface alloying with AI (GESA treatment)

Cross section of alloyed layer

Surface alloying by turbulent mixing

Al content in surface layer can be adjusted by adapting the GESA process Coating + GESA treatment parameters

IAEA Technical meeting on structural materials for heavy liquid metal cooled fast reactors, Vienna, 15-17 October

Pb/PbBi compatibility of AI surface alloyed steel at optimal oxygen concentration 10⁻⁶ wt%

Thin alumina scales protect the surface alloyed steel.

Bulk FeCrAl to answer this question

R. Fetzer, G. Mueller, W. An, A. Weisenburger, Metal surface layers after pulsed electron beam treatment *Surf. Coat. Tech.* 258, 549 (2014) doi.org/10.1016/j.surfcoat.2014.08.039 **P. Fetzer, A. Weisenburger, A. Lianu, G. Müller**, Oxide scale formation of modified EeCrAL coatings exposed to liquid load. *Correst Sci.* 55

R. Fetzer, A. <u>Weisenburger</u>, <u>A. Jianu</u>, G. Müller, Oxide scale formation of modified FeCrAl coatings exposed to liquid lead, *Corros. Sci.* 55, 213-218 (2012) <u>https://doi.org/10.1016/j.corsci.2011.10.019</u>

IAEA Technical meeting on structural materials for heavy liquid metal cooled fast reactors, Vienna, 15-17 October

Alumina forming steels - Bulk FeCrAl +RE

Influence of Cr Al content plus RE on the corrosion behavior (400-600°C) in Pb

Fe-(6.2-16.9)Cr-(4.2-8.8)AI

Gracing incident XRD Cr/Al ratio **16Cr/6Al** required for alumina formation Mainly transition aluminas no α -Alumina Fe-16Cr-(4, 6, 8) Al-0.5Y, Zr, Hf, Mo

Reactive elements like Y, Zr, Hf foster the alumina formation

formation of thin Al-oxide scale

Oxide map of FeCrAI+RE in Pb-alloys between 450 and 600°C – oxygen 10⁻⁶wt%

Al₂O₃ formation at entire temperature range requires a certain Al, Cr ratio Reactive elements like Y, Zr, Hf foster the alumina formation Both surface alloyed and bulk FeCrAl can protect the steels in Pb up to 750°C

A. Jianu, R. Fetzer, A. Weisenburger, S. Doyle, M. Bruns, et al., Stability domain of alumina thermally grown on FeeCreAlbased model alloys and modified surface layers exposed to oxygen containing molten Pb, J. Nucl. Mater. 470, 86 (2016) doi.org/10.1016/j.jnucmat.2015.12.009

IAEA Technical meeting on structural materials for heavy liquid metal cooled fast reactors, Vienna, 15-17 October

Alumina forming austenitic steels - AFA

Elements	Range(wt.%)	Role
Ni	20~32	stabilize austenite
Al	2~5	oxidation resistance
Cr	12~16	third element effect

1st generation AFA-austenitic alloys: FeCr_{12~16}Al_{2.5~4}Ni_{20~29}

Metal powder

Cr

Ni

Arc melter

 2^{nd} generation AFA-austenitic alloys: FeCr_{14~16}Al_{2.5~4}Ni_{20~29} + Y + Nb

heat treatment (quarz glas capsule) 1250°C 2h – rapid cooling in water

Schaeffler diagram of AFA model alloys with Y and Nb

AFA: Schaeffler constitution diagram show the phase at room temperature

Calculated phase diagrams for model Fe-(14,15,16)Cr-xAlyNi+Y+Nb alloy system at 600°C

AFA: Phase prediction at 600°C (thermal-calc, TCFE 7 database)

2nd generation of AFA – KIT

Based on 1st results - simple model alloys

➔ to evaluate minimum AI and Cr content required, maximum Ni content allowed – Phases are measured after heat treament

	Code		Nominal composition	on	Cr		Α	l	Ni		Fe	
AFA45		5	Fe-14Cr-3Al-20Ni	14.4			2.	8	19.5		Bala	nce
AFA46 F		6	Fe-16Cr-2.5Al-20Ni	16.6			2.	3	19.6		Bala	nce
	AFA47	7	Fe-16Cr-3Al-20Ni		16.6		2.	7	21.7		Bala	nce
	AFA48	3	Fe-12Cr-4Al-22Ni		12.2		4.	0	21.3		Bala	nce
	AFA49)	Fe-14Cr-4Al-22Ni		14.4		4.	2	21.2		Bala	nce
С	ode	Nomi	nal compositions	Al		Cr		Ni	Nb	Y		Fe
A	FA70	Fe-14	Cr-2.5Al-18Ni-0.5Y	2.7	7	14.7		17.9		0.4		Balance
A	FA71	Fe-15	Cr-2.5Al-20Ni-0.5Y	2.5	5	15.4		19.9		0.5		Balance
A	FA72	Fe-16	Cr-2.5Al-22Ni-0.5Y	2.5	5	15.4		21.8		0.5		Balance
A	FA73	Fe-15 1.5Nb	Cr-2Al-20Ni-0.5Y-	2.′	1	15.4		22.0	1.3	0.5		Balance
A	FA74	Fe-15 1.5Nb	5Cr-3Al-29Ni-0.5Y-	4.3	3	15.5		27.9	1.1	0.5		Balance
A	FA75	Fe-16 1.5Nb	Cr-3Al-24Ni-0.5Y-	3. <i>*</i>	1	15.7		24.1	1.68	0.7		Balance

IAEA Technical meeting on structural materials for heavy liquid metal cooled fast reactors, Vienna, 15-17 October

1st and 2nd generation of AFA – after annealing

Overview on corrosion behaviour in Pb at 550°C and 600 $^\circ\mathrm{C}$ of AFA model alloys

Code	Chemica	al composition (wt.%)	550 °C	600 °C		
AFA45	Fe-14.40	Cr-2.8Al-19.5Ni	\mathbf{c}	8		
AFA46	Fe-16.60	Cr-2.3Al-19.6Ni	•		All alloys with less than 15wt% Cr failed at least at	
AFA47	Fe-16.60	Cr-2.7Al-21.7Ni	<u>.</u>	8		
AFA48	Fe-12.20	Cr-4Al-21.3Ni		8	600°C	
AFA49	Fe-14.40	Cr-4.2Al-21.2Ni	<u>~</u>	8		
AFA50	Fe-16.50	Cr-2.5Al-21.4Ni	•	<u>:</u>		
AFA51	Fe-12.30	Cr-4.3Al-23.3Ni				
	Code	Chemical composition	ns (wt.%)	1000 h	2000 h	
	AFA70	Fe-14.7Cr-2.7Al-17.9N	Ni-0.4Y	<u>.</u>	<u>.</u>	
	AFA71	Fe-15.4Cr-2.5Al-19.9N	Ni-0.5Y	<u>.</u>	<u>.</u>	
AFA72 Fe-15.4Cr-2.5Al-21.8Ni-0.5Y		•				
AFA73 Fe-15.4Cr-2.1Al-22Ni-0.5Y-1.3Nb		<u>.</u>	<u>.</u>			
AFA74 Fe-15.5Cr-4.3Al-27.9Ni-0.5Y-1.1Nb		\sim	<u> </u>			
	AFA75	AFA75 Fe-15.7Cr-3.1Al-24.1Ni-0.7Y-1.68Nb		<u> </u>	<u></u>	

Exposure of Y and Nb containing AFA model alloys to Pb at 600°C for 2000h - stagnant 10⁻⁶wt% oxygen

Thin Al-rich oxide scales (Al,Cr)₂O₃

TEM investigation of AFA 75 after 2000h at 600°C

Thin Cr-oxide layer followed by Al-Oxide scale - < 50nm after 2000h

Matrix - precipitates:

Dark: Al, Ni - B2 phase Bright: Nb rich Laves

KIT - Thermal properties – first brief look

- *Thermal expansion coefficient* similar for all tested AFA and similar to 316
- Thermal diffusivity similar to 316
 - some show decrease of thermal conductivity for even higher temperatures
 - further examinations and explanations required

HEA Alloys design & manufacturing & 1st analysis

High entropy alloys: FeCr_{20~30}Al_{3~6}Ni_{20~37}

	Valence electron concentration VEC	Atomic size difference δr	Mix enthalpy ∆Hmix
FCC	>7.8	<6.6	-10KJ/mol<∆H<5KJ/mol
BCC	<6.87	<6.6	-10KJ/mol<∆H<5KJ/mol

Element X concentration: 5 mol.% < X% < 35 mol.%

Metal powder

Arc melter

$$\Omega = \frac{Tm \cdot \Delta S_{mix}}{|\Delta H_{mix}|}$$

estimate the high-entropy solid-solution formation value > 1.1

No further heat treatment – all results in as produced status

Design of HEA

Code	Chemical formula	∆Hmix	VEC	δr	Ω	Predicted Phase
HEA1	Al _{0.32} CrFeNi _{0.9}	-8.62	7.56	4.44	2.28	SS (FCC) +IM
HEA2	Al _{0.3} Cr _{0.68} FeNi	-8.29	7.75	4.41	2.31	SS (FCC) +IM
HEA3	Al _{0.26} Cr _{0.68} FeNi	-7.87	7.76	4.22	2.43	SS (FCC) +IM
HEA4	Al _{0.36} Cr _{0.68} FeNi	-8.87	7.62	4.74	2.18	SS (FCC) +IM
HEA5	Al _{0.18} Cr _{0.74} FeNi	-6.84	7.89	3.54	2.76	SS (FCC)
HEA6	Al _{0.23} Cr _{0.68} FeNi	-7.55	7.85	4.02	2.52	SS (FCC)
HEA7	$AI_{0.24}Cr_{0.6}Fe_{0.9}NiNb_{0.15}$	-10.92	7.71	4.83	1.98	SS (FCC) +IM
HEA8	Al _{0.25} Cr _{0.69} FeNiTi _{0.16}	-11.18	7.62	5.27	1.89	SS (FCC) +IM
HEA9	Al _{0.25} Cr _{0.69} FeNiCu _{0.16}	-5.45	7.95	4.02	3.82	SS (FCC)

VEC of HEA 1 to 4 and HEA 7 to 9 : FCC + 2nd phase HEA 5,6 single phase fcc, δr is always below the critical value for both fcc and bcc HEA

IAEA Technical meeting on structural materials for heavy liquid metal cooled fast reactors, Vienna, 15-17 October

IAEA Technical meeting on structural materials for heavy liquid metal cooled fast reactors, Vienna, 15-17 October

EXPOSURE in Pb at 600°C for 1000h - HEA

General corrosion resistance of HEA $\,$ - exposed in stagnant molten Pb at 600°C with 10-6 wt.%O_2 for 1000h

Code	Nominal composition	550 °C	600 °C
HEA1	Alo.32CrFeNio.9		\bigcirc
HEA2	Alo.3Cro.68FeNi	<u>;</u>	\bigcirc
HEA3	Al _{0.26} Cr _{0.68} FeNi	\bigcirc	$\ddot{}$
HEA4	Alo.36Cro.68FeNi	\mathbf{c}	
HEA5	Al _{0.18} Cr _{0.74} FeNi	<u> </u>	<u>;</u>
HEA6	Al _{0.23} Cr _{0.68} FeNi	<u> </u>	<u>.</u>
HEA7	Al _{0.24} Cr _{0.6} Fe _{0.9} NiNb _{0.15}	$\overline{}$	$\overline{}$
HEA8	Al _{0.25} Cr _{0.69} FeNiTi _{0.16}		
HEA9	Al _{0.25} Cr _{0.69} FeNiCu _{0.16}	8	8

- Samples surface with only a little bit Pb attaching, indicating the formation of oxide scale
- HEA 9 Pb adherent scale spallation but no dissolution

HEA - 1000h at 600°C in Pb 10⁻⁶wt% oxygen

All specimens besides the Cu containing show the formation of a protective oxide scale mainly AICr rich.

HEA - 1000h at 600°C in Pb 10⁻⁶wt% oxygen

All specimens besides the Cu containing show the formation of a protective oxide scale mainly AICr rich.

Continues thin AI rich oxide scale protects the HEA.

Thin Al/Cr Oxide scales were also detected on the laves phase of HEA 7. Laves Phase contain 17 at% Nb and 7at% Al

Microstructure stability of HEA after exposure to Pb at 600°C

Code	Phase transformation	Second phase coarsening or precipitates
HEA1	Ν	Ν
HEA2	Ν	Ν
HEA3	Ν	Y (at 600 °C)
HEA4	Ν	Ν
HEA5	Ν	Y
HEA6	Ν	Y (at 600 °C)
HEA7	Ν	Ν
HEA8	Y	Y

Beside HEA 8 (containing Ti) all are phase stable HEA 1,2,4,7 so not show coarsening or precipitation either

Summary Outlook

There are options to overcome the temperature limit

All the approaches are suitable advanced corrosion mitigation strategies Temperature > 600°C in Pb, PbBi feasible

Issues: Al-Surface alloys using GESA process – reproducibility and reliability and Bulk alumina formers, FeCrAI, AFA and HEA – influence of minor elements (C, RE, ..), production route – large scale,

None of these is yet fully characterized

None of these is ready now – coatings and surface alloys more advanced AFA and HEA require "real" metallurgical processing – at time 1st metallurgical processed AFA are in our LAB – exposure test up to 750°C are performed – evaluation of exposed specimens started

All require more R&D

H2020 project GEMMA EERA-JPNM PP – ALCORE – focus on Alumina forming alloys - HEAFNA – HEA for nuclear applications