The effect of lead bismuth eutectic on structural materials for the accelerator driven system MYRRHA

E. Stergar, S. Gavrilov, V. Tsisar, P. Marmy

SCK•CEN Belgian Nuclear Research Center

estergar@sckcen.be
MYRRHA = Accelerator Driven System

Key Objectives

1. Demonstrate the ADS concept at pre-industrial scale
2. Demonstrate transmutation
3. Multipurpose and flexible irradiation facility (with fast neutron source)

Accelerator
- particles: protons
- beam energy: 600 MeV
- beam current: 2.4 to 4 mA

Reactor
- power: 65 to 100 MW$_{th}$
- k_{eff}: 0.95
- spectrum: fast
- coolant: LBE

Target
- main reaction: spallation
- output: 2×10^{17} n/s
- material: LBE (coolant)

Source: SCK•CEN MYRRHA Project Team, MYRRHA Business Plan
MYRRHA is a multipurpose research facility, addressing end-markets with both significant societal and economic impact.
Goal of the materials program

Provide data and information for a justified materials choice in the design

- Liquid metal corrosion & erosion
- Mechanical properties in liquid metals
- Materials in accidental conditions
- Return of experience/Literature research

Practical considerations lead to a pre-selection of 316L, 1515Ti, T91
Materials research is not a linear process

- Parameter studies
- Long term experiments
- Mitigation strategies
- Feasibility studies

- Very high temperatures experiments
- Temperature excursions
- Burst testing

- Tensile, Fracture, Fatigue
- Specialized installations
- Welding
- Reference testing

- Return of experience
- Material justifications
- Q/A procedures

Liquid metal corrosion & erosion

Mechanical properties in liquid metals

Accidental conditions

Material choices and justifications
MYRRHA materials R&Q program principal directions

- Identification of materials issues
 - Collaboration with designers, fuel, safety and coolant chemistry groups
 - Learning lessons from Gen II/III
 - (Pre-)licensing activities
 - Assistance in design
 - Materials choice justification
 - Various scenarios related to materials failure
 - Preliminary assessment of materials damage mechanisms
 - Support for development of surveillance programs

- Assessment of materials properties & qualification of materials
 - Basic mechanical characterization
 - Development of testing procedures
 - Identified materials issues and related R&D program
 - Liquid Metal Corrosion (LMC)
 - Effect of LBE on mechanical properties
 - Irradiation effects
 - Synergetic effects
 - Irradiation experiments

- Development of testing infrastructure
Large scale LBE facilities in support of MYRRHA R&D

- Corrosion loop: CRAFT – in operation
- Chemistry test loop: MEXICO – in operation
- Fracture toughness & fatigue setups: LIMETS 3 & 4 – in operation
- Filter test loop: LILLIPUTTER – in operation
- Robotics test facility: RHAPTER – in operation
- Oxygen conditioning facility: HELIOS III – in operation
- Components test loop COMPLOT – end of commissioning phase
- Thermal Hydraulics test pool ESCAPE – under construction
Specialized set-ups for mechanical tests in LBE

LIMETS 1
Tensile & Fracture toughness tests in LBE

LIMETS 2
Tensile and FT tests of irradiated* steels in liquid metal

*Licensed for α (Po) contaminated specimens

LIMETS 3
Fatigue tests in LBE
Commissioning stage

LIMETS 4
Tensile & Fracture toughness tests in LBE

Hot cell 12 & LIMETS 2
Tensile and FT tests of irradiated* steels in liquid metal

*Licensed for α (Po) contaminated specimens
Materials degradation effects to be investigated

- Liquid Metal Embrittlement (LME)
- Liquid Metal Corrosion (LMC)
- Irradiation effects/synergetic effects
Liquid Metal Embrittlement (LME) effect

Degradation of steel’s mechanical properties in contact with liquid metal

Potentially can affect:
- Tensile properties
 - Total elongation
- Fracture toughness
- Fatigue properties
 - Endurance
 - Crack Growth Rate
- Creep properties
 - Creep rate
- Creep-fatigue properties
Effect of dissolved oxygen concentration

Stress-strain curves of **T91 steel** in Ar+5%H₂ and in LBE at 350 °C and at strain rate at 5·10⁻⁵s⁻¹.
Fracture toughness of T91 in LBE

<table>
<thead>
<tr>
<th>Test environment</th>
<th>Test temperature (°C)</th>
<th>Pre-cracking environment</th>
<th>Average J_Q (kJ/m²)</th>
<th>Fracture surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-5%H₂</td>
<td>350</td>
<td>Air</td>
<td>417 ± 23</td>
<td>Ductile</td>
</tr>
<tr>
<td>LBE</td>
<td>350</td>
<td>Air</td>
<td>303 ± 4</td>
<td>Ductile with quasi-cleavage side cracks</td>
</tr>
<tr>
<td>LBE</td>
<td>350</td>
<td>LBE</td>
<td>63 ± 14</td>
<td>Quasi-cleavage</td>
</tr>
</tbody>
</table>

85 % reduction in fracture toughness in LBE

Investigation of susceptibility of 316L

SSRT

Fractography

Fatigue

ln N = 6.891 - 1.92 ln(ε_a - 0.112) (Chopra and Shack, 2007)

ln N = 6.954 - 2.0 ln(ε_a - 0.167) (ASME Code Mean Curve)

© SCK* CEN, 2018
Materials tested at SCK•CEN for susceptibility to LME by SSRT

- **T91** DEMETRA heat - screening tests completed - > susceptible
 - Irradiated - screening tests completed - > susceptible
- **316L** DEMETRA heat - > screening tests completed - > not susceptible
 - Irradiated (up to 30dpa) - > not susceptible
- **1.4970** - > screening tests completed
 - Solution annealed - > not susceptible
 - Cold worked - > not susceptible
 - Cold Worked+irradiated - > not susceptible
- **CLAM & Si doped CLAM** - > susceptible
- **Eurofer 97 heat 2** - screening tests completed - > susceptible
- **EP-823** analog - screening tests completed – very susceptible
- **Si doped FeCr** steels - > screening tests completed – very susceptible
- **Fe10CrAl (exp. heat)** - > screening tests completed – > susceptible
- **ODS 12%Cr (KOBELCO)** - > screening tests completed - > susceptible
Options to handle LME for design

- To use materials, which are not susceptible to LME
 - Pro: readily available materials & data (ideally in construction codes)
 - Con: significant reduction of candidate materials
 - Challenges: demonstration of immunity

- Incorporation of LME by reduction of mechanical properties
 - Pro: widening list of candidate materials
 - Con: extensive research, development and qualification required
 - Challenges: how to define the ‘reduction’

- Mitigation techniques
 - Pro: ‘vanishing’ of susceptibility
 - Con: extensive research, development and qualification required
 - Challenges: to define and justify mitigation strategy
Options to handle LME for design

- To use materials, which are not susceptible to LME
 - Pro: readily available materials & data (ideally in construction codes)
 - Con: significant reduction of candidate materials
 - Challenges: demonstration of immunity

- Incorporation of LME by reduction of mechanical properties
 - Pro: widening list of candidate materials
 - Con: extensive research, development and qualification required
 - Challenges: how to define the ‘reduction’

- Mitigation techniques
 - Pro: ‘vanishing’ of susceptibility
 - Con: extensive research, development and qualification required
 - Challenges: to define and justify mitigation strategy
Materials degradation effects to be investigated

- Liquid Metal Embrittlement (LME)
- Liquid Metal Corrosion (LMC)
- Irradiation effects/synergetic effects
Liquid metal corrosion

1. **Oxidation**
 - Multi-layered oxide scales form in contact with O-containing LBE on steel surface
 - If protective at service conditions, oxide scales minimize further attack of steel by LBE

 316: 500°C, 4000 h
 (S. Gavrilov, SCK•CEN data)

2. **Dissolution**
 - Loss of steel alloying elements (Ni, Mn, Cr)
 - LBE penetration
 - Ferritization of dissolution zone due to loss of austenite stabilizers (Ni, Mn)

 316L: 500°C, ∼4000 h, 7×10^{-7} wt%, 2m/s LBE
 (S. Gavrilov, SCK•CEN data)

3. **Erosion**
 - Severe material loss & compromise of structural integrity
 - Observed at high LBE flow velocities, two-phase flow, and sites of flow diversion

 316L: 600°C, 2000 h, $C_0 \approx 10^{-6}$ wt%, flowing LBE ($v \approx 2$ m/s)
Temperature Dependence of 316L Dissolution Corrosion

- Cold-drawn 316L steel heats
- Solution-annealed 316L steel heat

Corrosion layer thickness vs. Temperature, °C

- 316LH1
- 316LH3
- 316L Demetra
- 316LH4
- 316LH2
Temperature Dependence of 316L Dissolution Corrosion

- LBE penetration faster than dissolution (leaching)
- LBE penetration & leaching: equally fast

Corrosion layer thickness vs. Temperature, °C
Temperature Dependence of 316L Dissolution Corrosion

- LBE penetration faster than dissolution (leaching)
- LBE penetration & leaching: equally fast

Solution-annealed 316L steel heat

Cold-drawn 316L steel heats
SCK•CEN corrosion data base

- **316L -> tentative design correlation**
 - solution annealed, cold drawn, controlled deformation (20, 40, 60 %), components
 - \(T: 350 \div 550 \, ^\circ \text{C} \)
 - \(t: \) specimens up to 20.000 h / components up to 100.000 h (>11 years)
 - \([O]: \) very low (<\(10^{-12} \) wt. %), controlled (\(10^{-5}, 10^{-6}, 10^{-7} \) wt.%), saturation
 - Stagnant and flow (up to 2.2 m/s)
 - Irradiated up to 35 dpa in contact with LBE

- **1.4970 -> tentative design correlation**
 - AIM1, cold worked, reference cladding tubes, solution annealed, welded plugs
 - \(T: 350 \div 1000 \, ^\circ \text{C} \)
 - \(t: \) cladding tubes up to 20.000 h
 - \([O]: \) very low (<\(10^{-10} \) wt. %), controlled (\(10^{-8}-10^{-4} \) wt.%)
 - Stagnant and flow (up to 2.2 m/s)
 - Irradiated up to 35 dpa in contact with LBE

- **T91, EP823, MAX phases, S2439, S2440, surface modifications**
Materials degradation effects to be investigated

- Liquid Metal Embrittlement (LME)
- Liquid Metal Corrosion (LMC)
- Irradiation effects/synergetic effects
Irradiation experiments

- **TWIN-ASTIR**
 - Irradiation experiment in BR2 reactor (SCK•CEN, Belgium)
 - Materials: T91, 316L, High Silicon Steels, welds
 - Doses: 0, 1.5 and 2.5 dpa
 - Environment: LBE & PWR water H₂O
 - Temperatures: 300-320°C (H₂O), 350-370°C & 460-490°C (LBE)
 - Specimens: Tensile, DCT, corrosion plates

- **LEXUR II**
 - Irradiation experiment in BOR-60 reactor (RIAR, Russia)
 - Materials: T91, 316L, 15-15Ti, ODS (Pb)
 - Doses: 0, 6÷35 dpa
 - Environment: LBE, Pb
 - Temperatures: 350°C (LBE) & 550°C (Pb)
 - Specimens: Tensile, DCT, corrosion discs, pressurized tubes
Strong influence of LBE on the tensile properties of irradiated T91
No influence of LBE on the tensile properties of irradiated 316L
~6 dpa in LBE tested in air

~6 dpa in LBE tested in LBE

0 dpa annealed in LBE tested in LBE
Belgian Government decision on September 7, 2018

- **Decision to build** in Mol a new large research infrastructure MYRRHA
- Belgium **allocated budget** of 558 M€ for the period 2019 - 2038:
 - 287 MEUR investment (CapEx) for building MINERVA (Accelerator up 100 MeV + PTF) for 2019 - 2026
 - 115 MEUR for further design, R&D and Licensing for phases 2 (accelerator up to 600 MeV) & 3 (reactor) for 2019-2026.
 - 156 MEUR for OpEx of MINERVA for the period 2027-2038
- **Establishment of an International Non-Profit Organization**
 - in charge of the MYRRHA facility for welcoming international partners
- **Political support** for establishing MYRRHA international partnerships
 - Belgium mandates Vice Prime Minister Kris Peeters for promoting and negotiating international partnerships
A jump in the future for innovation in Belgium