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MYRRHA = Accelerator Driven System

1. Demonstrate the ADS concept at pre-industrial scale
2. Demonstrate transmutation
3. Multipurpose and flexible irradiation facility (with fast neutron source)

Accelerator

particles protons

beam energy 600 MeV

beam current 2.4 to 4 mA
Reactor

power 65 to 100 MWth

keff 0,95

spectrum fast 

coolant LBE

Target

main reaction spallation

output 2·1017 n/s

material LBE (coolant)

Key Objectives

2Source: SCK•CEN MYRRHA Project Team, MYRRHA Business Plan



© SCK�CEN, 2018

Radio-isotopes

Fundamental 
research

Multipurpose
hYbrid

Research
Reactor for
High-tech
Applications

Fission GEN IV Fusion

Source: SCK•CEN MYRRHA Project Team, MYRRHA Business Plan

Waste

SMR LFR

MYRRHA is a multipurpose research facility, addressing end-markets 
with both significant societal and economic impact
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Liquid metal corrosion & erosion

Mechanical properties in liquid metals 

Materials in accidental conditions

Return of experience/Literature research

Materials 
justification 

and 
Licensing

Goal of the materials program

Provide data and information for a justified materials choice in the design
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Practical considerations lead to a pre-selection of 316L, 1515Ti, T91
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• Return of experience
•Material justifications
•Q/A procedures

•Very high temperatures 
experiments

•Temperature excursions
•Burst testing

•Tensile, Fracture, Fatigue
•Specialized installations
•Welding
•Reference testing

•Parameter studies
•Long term experiments
•Mitigation strategies
•Feasibility studies

Liquid metal 
corrosion & 

erosion

Mechanical 
properties in 
liquid metals

Material 
choices and 
justifications

Accidental 
conditions

Materials research is not a linear process
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MYRRHA materials R&Q program principal directions 
l Identification of materials issues

l Collaboration with designers, fuel, safety and coolant chemistry groups
l Learning lessons from Gen II/III
l (Pre-)licensing activities
l Assistance in design

l Materials choice justification
l Various scenarios related to materials failure
l Preliminary assessment of materials damage mechanisms
l Support for development of surveillance programs

l Assessment of materials properties & qualification of materials 
l Basic mechanical characterization
l Development of testing procedures
l Identified materials issues and related R&D program

l Liquid Metal Corrosion (LMC)
l Effect of LBE on mechanical properties
l Irradiation effects
l Synergetic effects

l Irradiation experiments
l Development of testing infrastructure

6



© SCK�CEN, 2018

Large scale LBE facilities in support of MYRRHA R&D

l Corrosion loop: CRAFT – in operation

l Chemistry test loop: MEXICO – in operation

l Fracture toughness & fatigue set-ups: LIMETS 3 & 4 – in operation

l Filter test loop: LILLIPUTTER – in operation

l Robotics test facility: RHAPTER – in operation

l Oxygen conditioning facility: HELIOS III – in operation

l Components test loop COMPLOT – end of commissioning phase

l Thermal Hydraulics test pool ESCAPE – under construction
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Specialized set-ups for mechanical tests in LBE

LIMETS 1

Hot cell 12 &
LIMETS 2

LIMETS 3

LIMETS 4
Tensile & Fracture 
toughness tests in LBE

Fatigue tests in LBE
Commissioning stage

Tensile and FT tests 
of irradiated* steels in 
liquid metal

*Licensed for α (Po) 
contaminated specimens

Tensile & Fracture 
toughness tests in LBE
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Materials degradation effects to be investigated 

l Liquid Metal Embrittlement (LME)
l Liquid Metal Corrosion (LMC)
l Irradiation effects/synergetic effects
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Liquid Metal Embrittlement (LME) effect

10

T91 
350 °C 

Example of Liquid Metal EmbrittlementDegradation of steel’s 
mechanical properties in contact 
with liquid metal

Potentially can affect:
l Tensile properties

l Total elongation
l Fracture toughness
l Fatigue properties

l Endurance
l Crack Growth Rate

l Creep properties
l Creep rate

l Creep-fatigue properties
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Effect of dissolved oxygen concentration
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Test in LBE 
with [O]saturated

Stress-strain curves of T91 steel in Ar+5%H2 and in LBE at 350 °C and at strain rate at 5·10-5s-1

Test in LBE with low [O], 
just after refurbishment 
of the autoclave

Effect depends on environmental parameters
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Fracture toughness of T91 in LBE

85 % reduction in fracture toughness in 
LBE

Test
environment

Test 
temperature

(°C)

Pre-cracking
environment

Average JQ
(kJ/m2) Fracture surface

Ar-5%H2 350 Air 417 ± 23 Ductile

LBE 350 Air 303 ± 4 Ductile with quasi-cleavage
side cracks

LBE 350 LBE 63 ± 14 Quasi-cleavage

Ersoy, F.; Gavrilov, S. & Verbeken, K. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests, 
Journal of Nuclear Materials, 2016, 472, 171-177
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Investigation of susceptibility of 316L
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SSRT

Fractography

Fatigue
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Materials tested at SCK•CEN for susceptibility to LME by SSRT

l T91 DEMETRA heat - screening tests completed->susceptible
l Irradiated - screening tests completed –> susceptible

l 316L DEMETRA heat -> screening tests completed-> not susceptible
l Irradiated (up to 30dpa) –> not susceptible

l 1.4970 -> screening tests completed
l Solution annealed –> not susceptible
l Cold worked –> not susceptible
l Cold Worked+irradiated –> not susceptible

l CLAM & Si doped CLAM –> susceptible
l Eurofer 97 heat 2 – screening tests completed ->susceptible
l EP-823 analog - screening tests completed – very susceptible
l Si doped FeCr steels->screening tests completed –>very susceptible
l Fe10CrAl (exp. heat) -> screening tests completed ->susceptible
l ODS 12%Cr (KOBELCO) -> screening tests completed ->susceptible

14



© SCK�CEN, 2018

Options to handle LME for design

l To use materials, which are not susceptible to LME
l Pro: readily available materials & data (ideally in construction codes)
l Con: significant reduction of candidate materials
l Challenges: demonstration of immunity

l Incorporation of LME by reduction of mechanical properties
l Pro: widening list of candidate materials
l Con: extensive research, development and qualification required
l Challenges: how to define the ‘reduction’

l Mitigation techniques
l Pro: ‘vanishing’ of susceptibility
l Con: extensive research, development and qualification required
l Challenges: to define and justify mitigation strategy

15
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Materials degradation effects to be investigated 

l Liquid Metal Embrittlement (LME)
l Liquid Metal Corrosion (LMC)
l Irradiation effects/synergetic effects
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3. Erosion

316L: 600°C, 2000 h, CO » 10-6 wt%, flowing LBE (v » 2 m/s)
(Müller et al., Journal Nuclear Materials, 301 (2002) 40-46)

o Severe material loss & compromise of structural integrity

o Observed at high LBE flow velocities, two-phase flow, and sites 
of flow diversion

2. Dissolution

316L: 500°C, ~4000 h, 7´10-7 wt%, 2m/s LBE
(S. Gavrilov, SCK•CEN data)

10 µm

steel o Loss of steel alloying 
elements (Ni, Mn, Cr)

o LBE penetration

o Ferritization of 
dissolution zone due 
to loss of austenite 
stabilizers (Ni, Mn)

1. Oxidation

316: 500°C, 4000 h
(S. Gavrilov , SCK•CEN data)

o Multi-layered oxide 
scales form in contact 
with O-containing LBE 
on steel surface

o If protective at service 
conditions, oxide 
scales minimize further 
attack of steel by LBE10 µmbase steel

magnetite

Si-containing FeCr-spinel

internal oxidation zone 
(IOZ)

Liquid metal corrosion
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Temperature Dependence of 316L Dissolution Corrosion

T1

T2

T3

T4
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Temperature Dependence of 316L Dissolution Corrosion

LBE penetration faster than 
dissolution (leaching)

LBE penetration & 
leaching: equally fastT1

T2

T3

T4
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Temperature Dependence of 316L Dissolution Corrosion

LBE penetration faster than 
dissolution (leaching)

LBE penetration & 
leaching: equally fast

2 μm

5 μm

20 μm

10 μm

T1

T2

T3

T4
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SCK•CEN corrosion data base

l 316L -> tentative design correlation
l solution annealed, cold drawn, controlled deformation (20, 40, 60 %), components
l T: 350 ÷ 550 °C
l t: specimens up to 20.000 h / components up to 100.000 h (>11 years) 
l [O]: very low ( <10-12 wt. %), controlled (10-5, 10-6, 10-7 wt.%), saturation
l Stagnant and flow (up to 2.2 m/s)
l Irradiated up to 35 dpa in contact with LBE

l 1.4970 -> tentative design correlation
l AIM1, cold worked, reference cladding tubes, solution annealed, welded plugs
l T: 350 ÷ 1000 °C
l t: cladding tubes up to 20.000 h
l [O]: very low ( <10-10 wt. %), controlled (10-8-10-4 wt.%)
l Stagnant and flow (up to 2.2 m/s)
l Irradiated up to 35 dpa in contact with LBE

l T91, EP823, MAX phases,  S2439, S2440, surface modifications

22
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Materials degradation effects to be investigated 

l Liquid Metal Embrittlement (LME)
l Liquid Metal Corrosion (LMC)
l Irradiation effects/synergetic effects
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Irradiation experiments

l TWIN-ASTIR
l Irradiation experiment in BR2 reactor (SCK•CEN, Belgium) 
l Materials: T91, 316L, High Silicon Steels, welds
l Doses: 0, 1.5 and 2.5 dpa
l Environment: LBE & PWR water H2O

l Temperatures: 300-320°C (H2O), 350-370°C & 460-490°C (LBE) 
l Specimens: Tensile, DCT, corrosion plates

l LEXUR II
l Irradiation experiment in BOR-60 reactor (RIAR, Russia)
l Materials: T91, 316L, 15-15Ti, ODS (Pb)
l Doses: 0, 6÷35 dpa
l Environment: LBE, Pb
l Temperatures: 350°C (LBE) & 550°C (Pb)
l Specimens: Tensile, DCT, corrosion discs, pressurized tubes
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Irradiation in LBE

T91 316L

Strong influence of LBE on the tensile properties of irradiated T91
No influence of LBE on the tensile properties of irradiated 316L

TELBE

TEirr

TEirr+LBE
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~6 dpa in LBE
tested in air

~6 dpa in LBE
tested in LBE

0 dpa annealed in LBE
tested in LBE
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Belgian Government decision on September 7, 2018

l Decision to build in Mol a new large research infrastructure MYRRHA

l Belgium allocated budget of 558 M€ for the period 2019 - 2038:
l 287 MEUR investment (CapEx) for building MINERVA (Accelerator up 100 MeV + PTF) for 2019 -

2026
l 115 MEUR for further design, R&D and Licensing for phases 2 (accelerator up to 600 MeV) & 3 

(reactor) for 2019-2026.
l 156 MEUR for OpEx of MINERVA for the period 2027-2038

l Establishment of an International Non-Profit Organization
l in charge of the MYRRHA facility for welcoming international partners

l Political support for establishing MYRRHA international partnerships
l Belgium mandates Vice Prime Minister Kris Peeters for promoting and negotiating international 

partnerships
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A jump in the future for innovation in Belgium


