The effect of lead bismuth eutectic on structural materials for the accelerator driven system MYRRHA

E. Stergar, S. Gavrilov, V. Tsisar, P. Marmy

SCK•CEN Belgian Nuclear Research Center

estergar@sckcen.be

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

MYRRHA = Accelerator Driven System

Key Objectives

- 1. Demonstrate the ADS concept at pre-industrial scale
- 2. Demonstrate transmutation
- 3. Multipurpose and flexible irradiation facility (with fast neutron source)

MYRRHA is a multipurpose research facility, addressing end-markets with both significant societal and economic impact

Goal of the materials program

Provide data and information for a justified materials choice in the design

Practical considerations lead to a pre-selection of 316L, 1515Ti, T91

Materials research is not a linear process

MYRRHA materials R&Q program principal directions

Identification of materials issues

- Collaboration with designers, fuel, safety and coolant chemistry groups
- Learning lessons from Gen II/III
- (Pre-)licensing activities
- Assistance in design
 - Materials choice justification
 - Various scenarios related to materials failure
 - Preliminary assessment of materials damage mechanisms
 - Support for development of surveillance programs
- Assessment of materials properties & qualification of materials
 - Basic mechanical characterization
 - Development of testing procedures
 - Identified materials issues and related R&D program
 - Liquid Metal Corrosion (LMC)
 - Effect of LBE on mechanical properties
 - Irradiation effects
 - Synergetic effects
 - Irradiation experiments
- Development of testing infrastructure

Large scale LBE facilities in support of MYRRHA R&D

Specialized set-ups for mechanical tests in LBE

LIMETS 1

Tensile & Fracture toughness tests in LBE

LIMETS 3 Fatigue tests in LBE Commissioning stage

LIMETS 4

Tensile & Fracture toughness tests in LBE

Hot cell 12 & LIMETS 2

Tensile and FT tests of irradiated* steels in liquid metal

*Licensed for α (Po) contaminated specimens

Materials degradation effects to be investigated

- Liquid Metal Embrittlement (LME)
- Liquid Metal Corrosion (LMC)
- Irradiation effects/synergetic effects

Liquid Metal Embrittlement (LME) effect

Degradation of steel's mechanical properties in contact with liquid metal

Potentially can affect:

- Tensile properties
 - Total elongation
- Fracture toughness
- Fatigue properties
 - Endurance
 - Crack Growth Rate
- Creep properties
 - Creep rate
- Creep-fatigue properties

Example of Liquid Metal Embrittlement

— 500 µm —

⊢ 400 µm ⊣

Effect of dissolved oxygen concentration

Stress-strain curves of **T91 steel** in Ar+5%H₂ and in LBE at 350 °C and at strain rate at 5.10⁻⁵s⁻¹

Fracture toughness of T91 in LBE

Ersoy, F.; Gavrilov, S. & Verbeken, K. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests, *Journal of Nuclear Materials*, **2016**, *472*, 171-177

Investigation of susceptibility of 316L

Materials tested at SCK•CEN for susceptibility to LME by SSRT

- T91 DEMETRA heat screening tests completed->susceptible
 - Irradiated screening tests completed -> susceptible
- **316L** DEMETRA heat -> screening tests completed-> not susceptible
 - Irradiated (up to 30dpa)
 -> not susceptible
- **1.4970** -> screening tests completed
 - Solution annealed —> not susceptible
 - Cold worked —> not susceptible
 - Cold Worked+irradiated —> not susceptible
- CLAM & Si doped CLAM -> susceptible
- Eurofer 97 heat 2 screening tests completed ->susceptible
- **EP-823** analog screening tests completed very susceptible
- Si doped FeCr steels->screening tests completed ->very susceptible
- Fe10CrAl (exp. heat) -> screening tests completed ->susceptible
- ODS 12%Cr (KOBELCO) -> screening tests completed ->susceptible

• To use materials, which are not susceptible to LME

- Pro: readily available materials & data (ideally in construction codes)
- Con: significant reduction of candidate materials
- Challenges: demonstration of immunity
- Incorporation of LME by reduction of mechanical properties
 - Pro: widening list of candidate materials
 - Con: extensive research, development and qualification required
 - Challenges: how to define the 'reduction'
- Mitigation techniques
 - Pro: 'vanishing' of susceptibility
 - Con: extensive research, development and qualification required
 - Challenges: to define and justify mitigation strategy

Options to handle LME for design

To use materials, which are not susceptible to LME

- Pro: readily available materials & data (ideally in construction codes)
- Con: significant reduction of candidate materials
- Challenges: demonstration of immunity
- Incorporation of LME by reduction of mechanical properties
 - Pro: widening list of candidate materials
 - Con: extensive research, development and qualification required
 - Challenges: how to define the 'reduction'
- Mitigation techniques
 - Pro: 'vanishing' of susceptibility
 - Con: extensive research, development and qualification required
 - Challenges: to define and justify mitigation strategy

Materials degradation effects to be investigated

- Liquid Metal Embrittlement (LME)
- Liquid Metal Corrosion (LMC)
- Irradiation effects/synergetic effects

Liquid metal corrosion

1. Oxidation

- Multi-layered oxide scales form in contact with O-containing LBE on steel surface
- If protective at service conditions, oxide scales minimize further attack of steel by LBE

316: 500°C, 4000 h (S. Gavrilov , SCK•CEN data)

2. <u>Dissolution</u> • L

Loss of steel alloying elements (Ni, Mn, Cr)

- LBE penetration
- Ferritization of dissolution zone due to loss of austenite stabilizers (Ni, Mn)

316L: 500°C, ~4000 h, 7×10⁻⁷ wt%, 2m/s LBE (*S. Gavrilov, SCK*•*CEN data*)

3. Erosion

- Severe material loss & compromise of structural integrity
- Observed at high LBE flow velocities, two-phase flow, and sites of flow diversion

316L: 600°C, 2000 h, $C_0 \approx 10^{-6}$ wt%, flowing LBE (v ≈ 2 m/s) (Müller et al., Journal Nuclear Materials, **301** (2002) 40-46)

Temperature Dependence of 316L Dissolution Corrosion

Temperature Dependence of 316L Dissolution Corrosion

Temperature Dependence of 316L Dissolution Corrosion

SCK•CEN corrosion data base

316L -> tentative design correlation

- solution annealed, cold drawn, controlled deformation (20, 40, 60 %), components
- **T**: 350 ÷ 550 °C
- t: specimens up to 20.000 h / components up to 100.000 h (>11 years)
- [O]: very low (<10⁻¹² wt. %), controlled (10⁻⁵, 10⁻⁶, 10⁻⁷ wt.%), saturation
- Stagnant and flow (up to 2.2 m/s)
- Irradiated up to 35 dpa in contact with LBE
- 1.4970 -> tentative design correlation
 - AIM1, cold worked, reference cladding tubes, solution annealed, welded plugs
 - **T**: 350 ÷ 1000 °C
 - t: cladding tubes up to 20.000 h
 - [O]: very low (<10⁻¹⁰ wt. %), controlled (10⁻⁸-10⁻⁴ wt.%)
 - Stagnant and flow (up to 2.2 m/s)
 - Irradiated up to 35 dpa in contact with LBE
- T91, EP823, MAX phases, S2439, S2440, surface modifications

Materials degradation effects to be investigated

- Liquid Metal Embrittlement (LME)
- Liquid Metal Corrosion (LMC)
- Irradiation effects/synergetic effects

Irradiation experiments

• TWIN-ASTIR

- Irradiation experiment in BR2 reactor (SCK•CEN, Belgium)
- Materials: T91, 316L, High Silicon Steels, welds
- Doses: 0, 1.5 and 2.5 dpa
- Environment: LBE & PWR water H₂O
- Temperatures: 300-320°C (H₂O), 350-370°C & 460-490°C (LBE)
- Specimens: Tensile, DCT, corrosion plates

LEXUR II

- Irradiation experiment in BOR-60 reactor (RIAR, Russia)
- Materials: T91, 316L, 15-15Ti, ODS (Pb)
- Doses: 0, 6÷35 dpa
- Environment: LBE, Pb
- Temperatures: 350°C (LBE) & 550°C (Pb)
- Specimens: Tensile, DCT, corrosion discs, pressurized tubes

Irradiation in LBE

Strong influence of LBE on the tensile properties of irradiated T91 No influence of LBE on the tensile properties of irradiated 316L

~6 dpa in LBE tested in air

~6 dpa in LBE tested in LBE

0 dpa annealed in LBE tested in LBE

Belgian Government decision on September 7, 2018

- **Decision to build** in Mol a new large research infrastructure MYRRHA
- Belgium **allocated budget** of 558 M€ for the period 2019 2038:
 - 287 MEUR investment (CapEx) for building MINERVA (Accelerator up 100 MeV + PTF) for 2019 -2026
 - 115 MEUR for further design, R&D and Licensing for phases 2 (accelerator up to 600 MeV) & 3 (reactor) for 2019-2026.
 - 156 MEUR for OpEx of MINERVA for the period 2027-2038
- Establishment of an International Non-Profit Organization
 - in charge of the MYRRHA facility for welcoming international partners
- **Political support** for establishing MYRRHA international partnerships
 - Belgium mandates Vice Prime Minister Kris Peeters for promoting and negotiating international partnerships

A jump in the future for innovation in Belgium

