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Breeding & Burn Reactor (B&BR)
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 Breeding fissile and in-situ burn of the bred fuel

- No refueling over 50 years, very high burnup (> 40%), sustainable fuel cycle 

- Tight-lattice & low-leakage (hardly achievable with coarse-lattice cores) 

Linear B&BR or TWR (Traveling Wave Reactor) (CANDLE)



Introduction
A challenge in a ‘high-performance’ fast reactor : positive CTC and CVR.
– Neutron spectral hardening (major)

• Reduced capture by U-238
• More fission from TRUs

– Reduced absorption by coolant (minor).
– More positive in a low-leakage and a long-life SFR 

(e.g. B&BR).

Existing ideas and concepts to improve the CVR and CTC:

– Heterogeneous core

– Softening neutron spectrum using moderator.

– Increasing neutron leakage e.g. pan-shape core.

 Complicated core design and/or reduced neutron economy

An alternative solution is to use a passive safety device.

– ARC* (Autonomous Reactivity Control) 

– FAST (Floating Absorber for Safety at Transient) 

– SAFE (Static Absorber Feedback Equipment) 
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Introduction
FAST (Floating Absorber for Safety at Transient)
– A guide thimble with a floating absorber rod inside
– The absorber and the void region is not attached.
– Installed by replacing pin or pins in a fuel assembly.
– To deal with positive void reactivity (originally)
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– Absorber
• 95% B-10 enriched B4C

: Buoyancy issue (mass reduction & absorption increment) 
→ void can + porous absorber

: He-4 production (n, α) of B-10
• Li-6

: Low density
: low reactivity worth in fast spectrum

– Cladding
• SiC/SiC composite

: Helium permeable
: Long life in fast neutron environment

(neutron irradiation resistance)

Absorber 
module



Introduction
How the (original) FAST works:
– Floats above the active core during normal operating condition.
– Sinks into the core as the coolant temperature reaches a set-point temperature (nominal + 100K).
– During the coolant loss accident, it is passively inserted into the core.
– Quickly responds to a temperature increases at the bottom of the core 

e.g. ULOHS and partial coolant blockage.
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Introduction
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SAFE (Static Absorber Feedback Equipment)
– Inspired by the negative reactivity insertion 

mechanism of control rod driveline thermal 
expansion.

– Long steel line holding an absorber rod in the tip.
– Absorber is also enriched B4C.
– The insertion depth of absorber is an optimization 

between reactivity loss due to insertion and the 
negative reactivity feedback gain due to steel 
expansion.

– Located in the control element assembly.
– Also can be placed in the fuel assembly.



Introduction
Can FAST be also effective in reducing CTC? 

→ Short response time is shown in previous study done by Lee*.
– FAST is expected to deal with positive CTC effectively with a

short response time (lower working set point ~ 3K above nominal).
– Detailed analysis of FAST considering time-dependent power change

is required.  

8Sungmin Lee, Development of analysis code for behavior of passive safety device in innovative sodium-cooled fast reactor, MA 
thesis, KAIST (2018) 

- Step heat flux change



Methodologies
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Methodologies
Governing Equations for FAST Movement

– Forces acting on the FAST

• Gravity = 𝝆𝑭𝑨𝑺𝑻𝑽𝒐𝒍𝒖𝒎𝒆𝑭𝑨𝑺𝑻 ൈ 𝒈

• Buoyancy =  𝝆𝒄𝒐𝒐𝒍𝒂𝒏𝒕 𝒛 𝒈𝒅𝑽𝑽

• Drag force

𝑭
𝑨
ൌ 𝝁 ∆𝑽𝒄𝒐𝒐𝒍𝒂𝒏𝒕

∆𝒓
𝐅𝐃 ൌ 𝝁 ∆𝑽𝒄𝒐𝒐𝒍𝒂𝒏𝒕

∆𝒓
∆𝑨𝑭𝑨𝑺𝑻𝒔𝒊𝒅𝒆 (For 1 finite node)

• Pressure force 
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Methodologies
Governing Equations for Coolant Heating

1. Energy Conservation

- Neglect viscous dissipation term and pressure work term*

- Average volumetric heat source (q’’’ = Conductive heat source from the cladding)

2. Mass Conservation

3. Conduction in fuel & FAST pin region
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Methodologies
Point Kinetics Equation
– Tightly coupled = neutron flux is more nearly separable in space and time.

– Small power distribution change during the transient in fast reactor 

– Difficult to consider the core expansion reactivity feedback practically

1. Governing equation is solved by simple FDM.

2. Reactivity components

- Reactivity coefficients and reactivity worth of FAST is explicitly calculated by SERPENT

- Average temperatures are considered to calculate the reactivity feedback
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Methodologies
System simplification for ATWS simulations
– The primary side is only modeled.

– Arbitrary heat removal scenario in IHX during the ATWS

• Simplification for feasibility study 

• System model is required for the realistic simulation
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Reference Cores & FAST Configurations
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Reference Core
Compact B&BR
– LEU driver fuel and SNF axial blanket (no radial blanket)
– Pan-shape initial core → minimization of excess reactivity.
– Zr-zoning core → flattened radial power distribution.
– PbO reflector → improved neutron economy.
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Design Parameters Value

Power, MWth 400

Core height, cm 180

Initial core height (IC/OC), cm 60 / 90

Active core equivalent radius, cm 116.19

Whole core equivalent radius, cm 205.15

Coolant inlet temperature, oC 360

Coolant outlet temperature, oC 510

Power density,  W/cc 90.149

Discharge burnup, GWd/MTHM 160

Core lifetime, EFPYs 52

Peak Cladding DPA 700



Reference Cores
Compact B&BR
– Lifetime ~ 50 years with 150GWd/MTHM of burnup

– Extremely small excess reactivity over ~50 year → Generic prevention of reactivity-induced accident

– Positive CVR and CTC at MOL and EOL
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Reactivity feedback coefficients BOL MOL EOL

Fuel temperature, ¢/ K -0.093± 0.001 -0.054± 0.002 -0.045± 0.003
Coolant temperature, ¢/ K -0.025± 0.001 0.170± 0.001 0.263± 0.001
CVR w/o FAST, ¢ -13.956± 1.451 632.634± 2.591 945.603± 3.418
CVR w/ FAST, ¢ -565.433± 1.859 -405.612± 2.678 -36.174 ± 2.529
Axial expansion , ¢/ K -0.025± 0.002 -0.051± 0.003 -0.067± 0.003
Radial expansion, ¢/ K -0.133± 0.002 -0.162± 0.005 -0.155± 0.003



Reference Cores
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Advanced Burner Test Reactor (ABTR)
- 250 MWth
- Metallic fuel

Advanced Burner Reactor (ABR)
- 1,000 MWth
- Mixed oxide fuel

Advanced Burner Test Reactor (ABTR) & Advanced Burner Reactor (ABR), ANL



Reference Cores
Reference cores
– Metallic B&BR - Compact B&BR (KAIST): High discharge burnup, low leakage
– Metallic SFR     - Advanced Burner Test Reactor (ANL): typical burner SFR with metallic fuel
– Oxide SFR         - Advanced Burner Reactor (ANL): typical burner SFR with oxide fuel 
Design parameters

Reactivity Coefficients
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Parameter Value
Metallic B&BR Metallic SFR Oxide SFR

Thermal power (MWth) 400 250 1000
Fuel material U-Zr (driver)

SNF-Zr (blanket) U-TRU-Zr TRU/SNF oxide

Average power density of active core (W/cm3) 57.1 258 231
Coolant inlet/outlet temperature (K) 633 / 783 628 / 783 628 / 783
Average discharge burnup (GWd/MTHM) 160 97.7 111
# of batches / cycle length (month) 1 / 624 (12/15/12)* / 4 5 / 12

Parameter Value
Metallic B&BR Metallic SFR Oxide SFR

Fuel temperature (pcm/K) -0.163 -0.33 -0.372
Coolant temperature (pcm/K) 0.952 0.099 0.496
Radial expansion (pcm/K) -0.561 -1.947 -0.93
Axial expansion (pcm/K) -0.243 -0.198 -0.155
Delayed neutron fraction 0.00362 0.0033 0.00264
Prompt neutron lifetime (μs) 0.34 0.33 0.59



Reference Cores
Reference cores
– Metallic B&BR - Compact B&BR (KAIST) : High discharge burnup, low leakage
– Metallic SFR     - Advanced Burner Test Reactor (ANL): typical burner SFR with metallic fuel
– Oxide SFR         - Advanced Burner Reactor (ANL): typical burner SFR with oxide fuel 
Power distribution
– Explicitly calculate axial power distribution for metallic B&BR
– Chopped cosine shape for typical SFRs
– EOL condition
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Reference FASTs
Design parameters

Reactivity worth: explicitly calculate (B&BR), typical control rod insertion-like (Burners)
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Design parameters Value
Metallic B&BR Metallic core Oxide core

Reactivity worth, $ 1 1 1
Absorber / void height, cm 90 / 50 40 / 20 60 / 20
B4C density, g/cm3 1.178 1.248 1.109
Absorber module average density, g/cm3 0.832 0.832 0.832
Absorber module radius, cm 0.3 0.2 0.2
FAST radius, cm 0.95 0.4 0.3775
Guide thimble thickness, cm 0.06 0.052 0.05



Transient Responses with the FAST Device
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Feasibility of FAST – Results
Unprotected Loss of Flow (ULOF)

– Inlet velocity ramp down 

• Constant inlet temperature*

• Exponential pump ramp down (halving time = 5 sec)

22*Housiadas, C., Simulation of loss-of-flow transients in research reactors. Annals of Nuclear Energy, 27(18), 1683-1693 (2000).



ATWS Analysis
Unprotected Loss of Flow (ULOF)

– Reactor power
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– Maximum temperatures of fuel and coolant

Maximum temperature of
coolant quickly exceed
the failure limit without
FAST!!



ATWS Analysis
Unprotected Loss of Heat Sink (ULOHS)

– Complete loss of heat removal capacity in IHX

• Linear decrease of heat removal in IHX from 100% to 0% over 20 seconds
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Unprotected Loss of Heat Sink (ULOHS)

– Reactor power

ATWS Analysis
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– Maximum temperatures of fuel and coolant

Quick power suppression
by FAST and moderate
increase of temperatures
in case with FAST



ATWS Analysis
Unprotected Transient Overpower

– External reactivity = 1$ (ramp up rate = 0.02 $/sec)

: Impractical in B&BR

– Keep nominal inlet coolant velocity (2.94 m/s)

– Two simple IHX models

• Constant core inlet coolant temperature

• Constant temperature drop in IHX
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ATWS Analysis
Unprotected Transient Overpower (UTOP) 

– Reactor power
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< Constant core inlet coolant temperature >

Quick initial decrease of
temperature by FAST and
oscillation due to the
refloating of absorber
module caused by power
and temperature suppression

– Maximum temperatures of fuel and coolant



ATWS Analysis
Unprotected Transient Overpower (UTOP) 

– Reactor power
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< Constant temperature drop in IHX >

Quick initial decrease of
temperature by FAST and
different oscillation
tendency depending on
IHX modeling scenario

– Maximum temperatures of fuel and coolant



Conclusions and Future Works
Conclusions
– Performance of FAST

• It is possible to directly apply the FAST to deal with the positive CTC.

• FAST effectively and successfully mitigates consequence of the ATWS (Anticipated Transient W/o 
Scram) scenarios. → Early failure of core during any ATWS is effectively prevented.

• Inherent safety of SFRs can be improved substantially with the FAST device.

Future Works
– Realistic transient analysis with system model

– Consideration of locking device for FAST absorber module to prevent the possible oscillation.
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Thank you!
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