[Technical Meeting on the Benefits and Challenges of Fast Reactors of the SMR Type]

A Passive Safety Device for SFRs with Positive Coolant Temperature Coefficient

Chihyung Kim and Yonghee Kim

September 26, 2019

Department of Nuclear & Quantum Engineering

Korea Advanced Institute of Science and Technology

Table of Contents

Introduction

- B&BR and Fast Reactor
- Passive Safety Devices
- Motivation

Feasibility of FAST (Floating Absorber for Safety at Transient)

- Methodologies
- Reference Cores
- Reference FAST Designs
- ATWS Simulations

Conclusions and Future Works

Breeding & Burn Reactor (B&BR)

- No refueling over 50 years, very high burnup (> 40%), sustainable fuel cycle
- Tight-lattice & low-leakage (hardly achievable with coarse-lattice cores)

Linear **B&BR** or **TWR** (Traveling Wave Reactor) (CANDLE)

A challenge in a 'high-performance' fast reactor : positive CTC and CVR.

- Neutron spectral hardening (major)
 - Reduced capture by U-238
 - More fission from TRUs
- Reduced absorption by coolant (minor).
- More positive in a low-leakage and a long-life SFR (e.g. B&BR).

Existing ideas and concepts to improve the CVR and CTC:

- Heterogeneous core
- Softening neutron spectrum using moderator.
- Increasing neutron leakage e.g. pan-shape core.
- \rightarrow Complicated core design and/or reduced neutron economy
- An alternative solution is to use a passive safety device.
- ARC* (Autonomous Reactivity Control)
- FAST (Floating Absorber for Safety at Transient)
- SAFE (Static Absorber Feedback Equipment)

: Long life in fast neutron environment (neutron irradiation resistance)

• Li-6

_

—

•

How the (original) FAST works:

- Floats above the active core during normal operating condition.
- Sinks into the core as the coolant temperature reaches a set-point temperature (nominal + 100K).
- During the coolant loss accident, it is passively inserted into the core.
- Quickly responds to a temperature increases at the bottom of the core

e.g. ULOHS and partial coolant blockage.

SAFE (Static Absorber Feedback Equipment)

- Inspired by the negative reactivity insertion mechanism of control rod driveline thermal expansion.
- Long steel line holding an absorber rod in the tip.
- Absorber is also enriched B₄C.
- The insertion depth of absorber is an optimization between reactivity loss due to insertion and the negative reactivity feedback gain due to steel expansion.
- Located in the control element assembly.
- Also can be placed in the fuel assembly.

Can FAST be also effective in reducing CTC?

 \rightarrow Short response time is shown in previous study done by Lee*.

- FAST is expected to deal with positive CTC effectively with a short response time (lower working set point ~ 3K above nominal).
- Detailed analysis of FAST considering time-dependent power change is required.

- Step heat flux change

Sungmin Lee, Development of analysis code for behavior of passive safety device in innovative sodium-cooled fast reactor, MA thesis, KAIST (2018)

Governing Equations for FAST Movement

- Forces acting on the FAST
 - Gravity = $\rho_{FAST} Volume_{FAST} \times g$
 - Buoyancy = $\int_{V} \rho_{coolant}(z) g dV$

• Pressure force

Governing Equations for Coolant Heating

- 1. Energy Conservation
- Neglect viscous dissipation term and pressure work term*
- Average volumetric heat source (q^{**} = Conductive heat source from the cladding)

$$\rho c_p \frac{\partial T_{coolant}}{\partial t} + \rho c_p v \frac{dT}{dz} = q ""$$

2. Mass Conservation

$$\frac{d\rho}{dt} + v\frac{d\rho}{dz} + \rho\frac{dv}{dz} = 0$$

3. Conduction in fuel & FAST pin region

$$\rho c_{p} \frac{\partial T_{fuel}}{\partial t} = \frac{1}{r} \frac{d}{dr} \left(kr \frac{dT_{fuel}}{dr} \right) + q'''$$

$$\rho c_{p} \frac{\partial T_{clad}}{\partial t} = \frac{1}{r} \frac{d}{dr} \left(kr \frac{dT_{clad}}{dr} \right)$$

Point Kinetics Equation

- Tightly coupled = neutron flux is more nearly separable in space and time.
- Small power distribution change during the transient in fast reactor
- Difficult to consider the core expansion reactivity feedback practically
- 1. Governing equation is solved by simple FDM.

$$\dot{p}(t) = \frac{\rho(t) - \beta(t)}{\Lambda} p(t) + \frac{1}{\Lambda} \sum_{k} \lambda_{k} \zeta_{k}(t)$$
$$\dot{\zeta}_{k}(t) = -\lambda_{k} \zeta_{k}(t) + \beta_{k} p(t), k = 1, 2, ..., 6$$

2. Reactivity components

- Reactivity coefficients and reactivity worth of FAST is explicitly calculated by SERPENT
- Average temperatures are considered to calculate the reactivity feedback

$$\rho(t) = \rho_0 + \alpha_f \Delta T_f + \alpha_c \Delta T_c + \Delta \rho_{ex} + \Delta \rho_{FAST}$$

- α_f = fuel temperature coefficient, C⁻¹
- α_c = coolant temperature coefficient, C⁻¹
- ρ_{ex} = external reactivity
- ρ_{FAST} = external reactivity inserted by FAST
- $\Delta T_f = T_f(t) T_{f0}$, fuel temperature change from the initial one
- $\Delta T_c = T_c(t) T_{c0}$, coolant temperature change from the initial one

System simplification for ATWS simulations

- The primary side is only modeled.
- Arbitrary heat removal scenario in IHX during the ATWS
 - Simplification for feasibility study
 - System model is required for the realistic simulation

Reference Cores & FAST Configurations

Compact B&BR

- LEU driver fuel and SNF axial blanket (no radial blanket)
- Pan-shape initial core \rightarrow minimization of excess reactivity.
- Zr-zoning core \rightarrow flattened radial power distribution.
- **PbO** reflector \rightarrow improved neutron economy.

Compact B&BR

- Lifetime ~ 50 years with 150GWd/MTHM of burnup
- Extremely small excess reactivity over ~50 year → Generic prevention of reactivity-induced accident

- Positive CVR and CTC at MOL and EOL

Reactivity feedback coefficients	BOL	MOL	EOL
Fuel temperature, ¢/ K	-0.093 ± 0.001	-0.054 ± 0.002	-0.045 ± 0.003
Coolant temperature, ¢/ K	-0.025 ± 0.001	0.170 ± 0.001	0.263 ± 0.001
CVR w/o FAST, ¢	-13.956 ± 1.451	632.634 ± 2.591	945.603 ± 3.418
CVR w/ FAST, ¢	-565.433 ± 1.859	-405.612 ± 2.678	-36.174 ± 2.529
Axial expansion , ¢/ K	-0.025 ± 0.002	-0.051 ± 0.003	-0.067 ± 0.003
Radial expansion, ¢/ K	-0.133 ± 0.002	-0.162 ± 0.005	-0.155 ± 0.003

Advanced Burner Test Reactor (ABTR) & Advanced Burner Reactor (ABR), ANL

Advanced Burner Test Reactor (ABTR)

- 250 MWth
- Metallic fuel

- Mixed oxide fuel

Reference cores

- Metallic B&BR Compact B&BR (KAIST): High discharge burnup, low leakage
- Metallic SFR Advanced Burner Test Reactor (ANL): typical burner SFR with metallic fuel
- Oxide SFR Advanced Burner Reactor (ANL): typical burner SFR with oxide fuel

Design parameters

Parameter	Value		
	Metallic B&BR	Metallic SFR	Oxide SFR
Thermal power (MWth)	400	250	1000
Fuel material	U-Zr (driver)		TRU/SNF oxide
	SNF-Zr (blanket)	U-IKU-Zľ	
Average power density of active core (W/cm ³)	57.1	258	231
Coolant inlet/outlet temperature (K)	633 / 783	628 / 783	628 / 783
Average discharge burnup (GWd/MTHM)	160	97.7	111
# of batches / cycle length (month)	1 / 624	(12/15/12)*/4	5 / 12

Reactivity Coefficients

Parameter	Value		
	Metallic B&BR	Metallic SFR	Oxide SFR
Fuel temperature (pcm/K)	-0.163	-0.33	-0.372
Coolant temperature (pcm/K)	0.952	0.099	0.496
Radial expansion (pcm/K)	-0.561	-1.947	-0.93
Axial expansion (pcm/K)	-0.243	-0.198	-0.155
Delayed neutron fraction	0.00362	0.0033	0.00264
Prompt neutron lifetime (µs)	0.34	0.33	0.59

Reference cores

- Metallic B&BR Compact B&BR (KAIST) : High discharge burnup, low leakage
- Metallic SFR Advanced Burner Test Reactor (ANL): typical burner SFR with metallic fuel
- Oxide SFR Advanced Burner Reactor (ANL): typical burner SFR with oxide fuel

Power distribution

- Explicitly calculate axial power distribution for metallic B&BR
- Chopped cosine shape for typical SFRs
- EOL condition

Reference FASTs

Design parameters

Design parameters	Value		
	Metallic B&BR	Metallic core	Oxide core
Reactivity worth, \$	1	1	1
Absorber / void height, cm	90 / 50	40 / 20	60 / 20
B_4C density, g/cm ³	1.178	1.248	1.109
Absorber module average density, g/cm ³	0.832	0.832	0.832
Absorber module radius, cm	0.3	0.2	0.2
FAST radius, cm	0.95	0.4	0.3775
Guide thimble thickness, cm	0.06	0.052	0.05

Reactivity worth: explicitly calculate (B&BR), typical control rod insertion-like (Burners)

Transient Responses with the FAST Device

Feasibility of FAST – Results

Unprotected Loss of Flow (ULOF)

- Inlet velocity ramp down
 - Constant inlet temperature*
 - Exponential pump ramp down (halving time = 5 sec)

Unprotected Loss of Flow (ULOF)

Unprotected Loss of Heat Sink (ULOHS)

- Complete loss of heat removal capacity in IHX
 - Linear decrease of heat removal in IHX from 100% to 0% over 20 seconds

Unprotected Loss of Heat Sink (ULOHS)

Unprotected Transient Overpower

- External reactivity = 1\$ (ramp up rate = 0.02 \$/sec)

- Keep nominal inlet coolant velocity (2.94 m/s)
- Two simple IHX models
 - Constant core inlet coolant temperature
 - **Constant temperature drop in IHX**

Unprotected Transient Overpower (UTOP) < **Constant core inlet** coolant temperature >

27

Conclusions and Future Works

Conclusions

- Performance of FAST
 - It is possible to directly apply the FAST to deal with the positive CTC.
 - FAST effectively and successfully mitigates consequence of the ATWS (Anticipated Transient W/o Scram) scenarios. → Early failure of core during any ATWS is effectively prevented.
 - Inherent safety of SFRs can be improved substantially with the FAST device.

Future Works

- Realistic transient analysis with system model
- Consideration of locking device for FAST absorber module to prevent the possible oscillation.

Thank you!

