EXPERIENCE IN THE PHYSICS DESIGN AND SAFETY ANALYSIS OF SMALL AND MEDIUM SIZED FBR CORES

A.Riyas Abhitab Bachchan T. Sathiyasheela K.Devan IGCAR INDIA

Technical Meeting on the Benefits and Challenges of Fast Reactors of the SMR Type, 24-27, September, 2019, Milan, Italy

Contents :

- Background and Introduction
- Methods
- Main Results and Comparison
- Conclusions
- Future Studies and Challenges

• Background and Introduction

Fast breeder reactors based on metal fuel are planned to meet the growing energy demand in India.

Additionally, it is planned to have the development of technologies required for launching commercial metal breeder reactors with closed fuel cycle.

- Merits of sodium cooled metallic fueled FBR cores
 - Harder spectrum and higher breeding
 - Lower doubling time
 - Better Fuel utilization
 - Reduces burn-up reactivity swing.
 - Reduces control rod worth
 - Severity of UTOPA is reduced

- Advantages ..
- Inherent passive safety features
 - Proved in EBR-II reactor
- Additional Merits
 - Pyro reprocessing
 - **»** Proliferation Resistant
 - Actinide Incineration
 - » Reduction of Radio toxicity

Challenges

- 1. The challenges of sodium cooled fast reactors in general
- Limited operating experience with metal fuels (only from smaller experimental reactors)
- 3. High sodium void reactivity worth is of concern for metal fueled FBR cores
- 4. Containing high radio activity in commercial scale Pyroprocessing plants
- Possible safety degradation with higher actinides in closed cycle

1 \$ criteria for sodium void worth has been accepted from the International community for safer fast reactor designs

- Possible Solution for the commencement of metal fueled program
 - Small power reactors for demonstration
 - Establish better irradiation behavior with higher safety
 - Continue with high power reactors with modified designs which can provide lower sodium void reactivity worth of 1\$.

- A preliminary conceptual design of small power reactor of 120 MWe core with sodium void worth less than 1 \$ is presented.
- Its relative merits are explained with the performance of a medium sized FBR core with respect to its:
 - Basic Core Physics Parameters
 - Performance during a ULOF accident

Calculation Scheme

Core Physics Analysis :

2D Diffusion Codes

Core multiplication factor Power, LHR, Breeding ratio

Normal and adjoint Fluxes

Perturbation Calculations

Material Worths and its distribution in the core

Kinetic Parameters

Delayed neutron fraction

Prompt neutron life time

Doppler constant

etc.,

Safety Analysis :

Point Kinetics Model

Use results of perturbation and thermo-dynamic properties Feed back reactivities Temperature and Power coefficients Dynamic response during ULOF transient

	the many sis			
Num ber	Parameter	Value		
1	Fuel Type	Metal U-Pu-Zr		
2	Zr Content (wt %)	6		
3	Fuel pin bonding	Sodium		
4	Peak LHR (W/cm)	450		
5	Cycle Length (days)	180		
6	Pin Radius -Fuel (mm)	6.6		
7	Pin Radius -Blanket (mm)	14.33		
8	Number of Fuel Pins/SA	217		
9	SA Pitch (cm)	13.5		
10	Volume Fractions-Fuel (%)	26/24/50		
11	Volume Fractions-Blanket (%)	42/19/39		

Metallic Fuel and Fuel Pin Properties used in			
the Analysis			

Thermo-Physical Properties of Metallic Fuels						
	used in the Analysis					
No	Parameter	Value				
•						
1	Fuel Density (g/cm ³)	17.1				
2	Smeared Density (g/cm ³)	12.8				
3	Melting Point (⁰ C)	1067				
4	Boiling Point	3932				
5	Thermal Conductivity	0.25				
	(W/cm/ ⁰ C)					
6	Linear Expansion Coefficient	19.7*10 ⁻⁶				
	(⁰ C ⁻¹)					
7	Gap Conductance (W/cm ² / ⁰ C)	27				
8	Specific Heat (J/g/ ⁰ C)	0.2				
9	Latent Heat of Fusion (J/Kg)	38				
10	Latent Heat of Vaporization	1641				
	(J /g)					

Basic Core Configuration and Core physics Properties

Results of perturbation Analysis

Material Void Worth (pcm)

Material	Core Size			
	120 MWe	500 MWe		
Sodium	+164	+1830		
Steel	+972	+4128		
Fuel	-2186	-1923		

Safety Parameters (pcm)				
Material	Core Size			
	120 MWe	500 MWe		
Doppler constant	-336	-470		
Delayed neutron fraction	385	403		

Distribution of sodium void in 120MWe Core (in RZ geometry)

-2	-12	-21	-21	-14	-11	-2	-1
-3	-13	-24	-27	-20	-23	-5	-1
1	4	-3	-14	-11	-26	-8	-2
6	24	23	2	-1	-27	-10	-3
10	42	46	17	8	-28	-12	-4
12	52	61	26	14	-29	-13	-4
12	53	62	27	15	-29	-14	-4
10	45	51	20	11	-28	-13	-4
7	29	30	7	2	-28	-11	-3
2	9	4	-8	-8	-26	-8	-3
-2	-10	-20	-21	-17	-24	-5	-2
-2	-9	-13	-12	-12	-11	-2	-1

____ r

	Compo				
Reactor Size	Leakage	Absorption	Fission	Scattering	Total (pcm)
120	-5956	+2368	0-	+4560	+972
500	-4780	+2829	0	+6079	+4128

z

Decetor		Region w	vise Contribution (p	icm)		
Reactor	Core-1	Core-2	Axial Blanket	Radial Blanket	iotai (pcm)	
120	+389	-	-114	-111	+164	
500	+1761	+231	-95	-67	+1830	

Main Components of Reactivity Feedbacks

- Fuel Doppler Feedback
 - Depends on temperature change
- Coolant Density
 - * -ve in periphery and +ve in core centre
- Fuel Axial Expansion
 - ✤ -ve
- * Core Radial Expansion.
 - * Grid plate expansion and flowering effects

✤ -Ve

	Reactor Size (Power –MWe)			
Coefficient	Small (120)	Medium (500)		
Temperature (pcm/C)	-2.598	-1.549		
Power (pcm/MWt)	-0.616	-0.213		

Net Reactivity Change with Time during ULOFA

Main Conclusions

- Basic core physics design of 120 MWe FBR core is presented.
 - The core can provide a breeding ratio of 1.1.
- Better safety performance during loss of flow accident is demonstrated.
 - More time margin to CDA during an un-protected transient of loss of flow accident.
- With respect to fuel breeding and safety aspects, smaller cores give better performance.

Future Studies ..

- UTOP Analysis and Optimization of Control Rods
 - Smaller core
 - Low internal breeding and high excess reactivity requirement
 - High fuel enrichment
 - High CR enrichment
 - High withdrawal worth
 - Severity of UTOPA has to be minimized
 - Limit withdrawal worth below 1 beta margin
 - Margin of prompt criticality

Challenges

- Obtaining high fuel burn-up without fuel failure
- Safety performance in closed cycle
 - Higher actinides
 - Degradation of safety parameters from ideal values
 - increase of sodium void worth from 1 \$ margin
 - Possible in delayed neutron fraction
 - Reduction of Doppler feedback
 - Ensuring safety in closed cycles for longer oprations

Thank You