

Conceptual Design of China Lead-based Mini-Reactor CLEAR-M10d

Presented by Chao Liu

Contributed jointly by FDS Team Institute of Nuclear Energy Safety Technology (INEST) Chinese Academy of Sciences (CAS)

www.fds.org.cn

Contents

I. Strategy & Plan
II. CLEAR-M Design Study
III. R&D Progress
IV.Summary

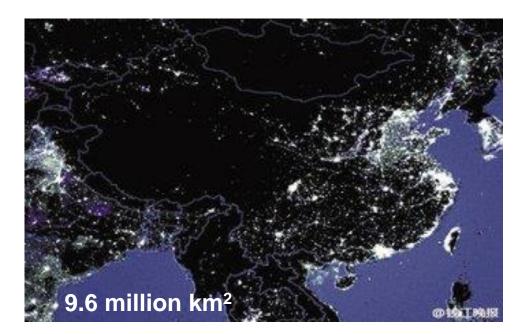
China's Plan on Nuclear Energy (Plan up to 2020)

* Nuclear power plant in China (by August, 2019)

- □ 45 reactors (~ 45.9 GWe) in operation
- □ 13 reactors (~16.6GWe) under construction

* National plan of developing nuclear energy before 2020

- **58** *GWe in operation*
- **3**0 GWe under construction


* National plan for nuclear and radiation safety before 2020

- More R&D are required to enhance nuclear safety, especially in the basic research of nuclear safety
- ~79.8 billion RMB investment plan (~13 billion US \$)

Small-scale Energy Supply Demand in China

- Remote area : ~12% of land area is desert without electricity supply
- Offshore unit : ~1/4 of gas and oil reserve in the sea, waiting for exploitation
- Distributed power supply: independent industry, with wind or solar energy
- Emergency electricity supply : Natural disaster in some provinces

Characteristics of Lead-based Reactor

Safety advantages

- **Neutronics :** Negative coefficient, Floating core debris
- Thermal-hydraulics: Low pressure, no LOCA, natural circulation
- Chemistry: Chemical inertial, no reaction with water and air, no hydrogen explosion

Sustainability advantages

Low neutron absorption, Low moderation, enable sustaining hard neutron spectrum High efficiency in fuel utilization

Burning long-lived, highlevel actinide wastes

Major China Lead-based Reactor Program1980s-1990s2000s2010s

- National High-Tech. Project : Fusion-fission hybrid reactor INEST/FDS in charge of Lead-based hybrid reactor
- ITER Project : Fusion reactor INEST/FDS in charge of China lead-based liquid blanket
- Strategic Priority Research Program of CAS : ADS system INEST/FDS in charge of lead-based sub-critical reactor
- China Lead-based Mini-Reactor (CLEAR-M) Supported by national/local government project and Industry investment

~30 years lead-based reactor R&D experiences

Contents

I. Strategy & Plan
II. CLEAR-M Design Study
III. R&D Progress
IV.Summary

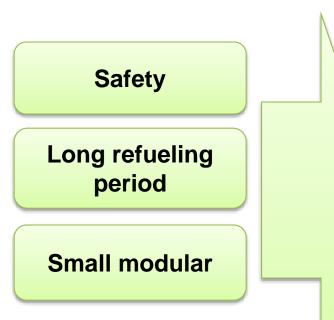
Proposal of a Small Modular Lead-based Reactor CLEAR-M10d

* 10MW class lead-based nuclear reactor

✓ Small modular

Easy to transport and install

Inherent safety


• Exclusive severe accident

Long refueling period

- Better economy
- Environmentally friendly

Design Basis

Pool type double wall reactor

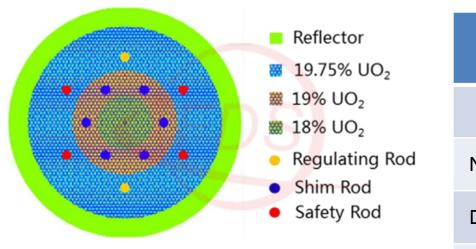
Pb as coolant (to exclude Po issue)

Diversity, redundant, passively decay heat remove system

Less maintenance requirement for primary system components (natural circulation)

> Less cladding corrosion (lower core velocity)

Relatively less reactivity change

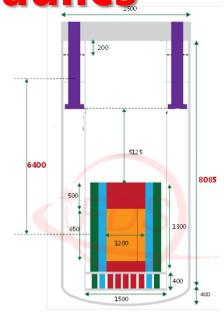

Size and weight limited (mainly for vessel diameter)

Quickly installation (Simple configuration of primary system)

Lead-based Mini-Reactor CLEAR-M10d

Parameter	Values
Thermal power	35MWth
Electrical power	14MWe 10MWe+17MWt
Fuel	Ave.18.5% UO2
Core life	10~20 years
Core inlet / outlet temperatures	375/495℃
Reactor vessel length-to- diameter ratio	4:1

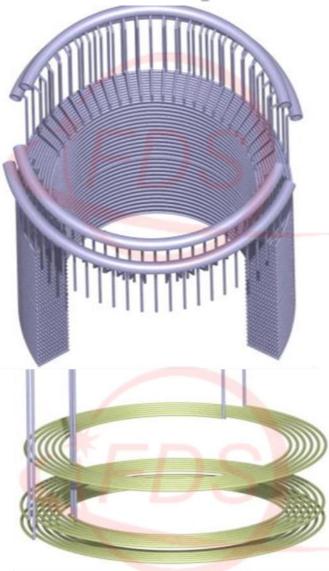
Reactor Core Design



Layout of CLEAR-M10d core

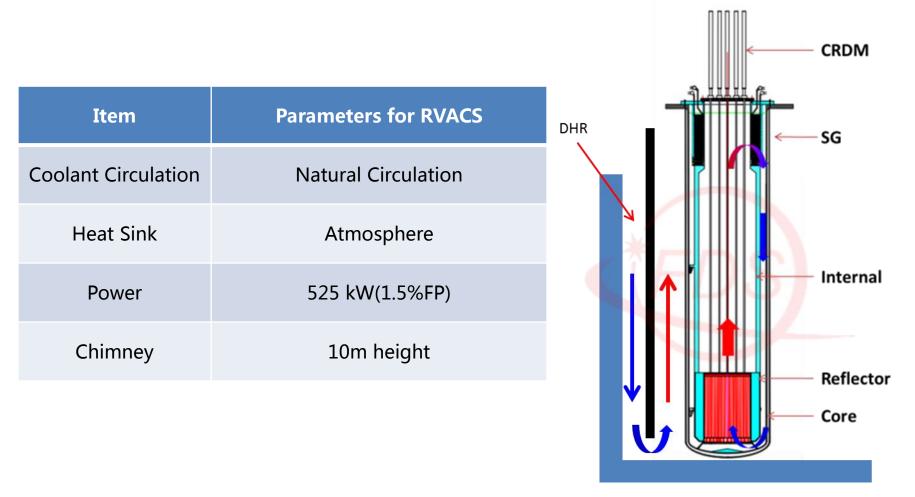
Parameter	Value	
Enrichment of fuel	19.75%/19%/18%	
Number of fuel pins	3500	
Diameter of fuel pin	16 mm	
Cladding thickness	1 mm	
Burnup	~62000 MWd/tU	

Core Thermal-hydraulics


Items	Unit	Value
Thermal power	MW	35
Coolant	-	Pb
Inlet /outlet temp. of core	°C	375/495
Diameter of Pins	mm	16
Pitch to diameter		1.2
Height of active zone	mm	790
Diameter of active zone	mm	1200
Average velocity of core	m/s	0.46
Max clading temp.	°C	540.6
Max fuel temp.	°C	1559

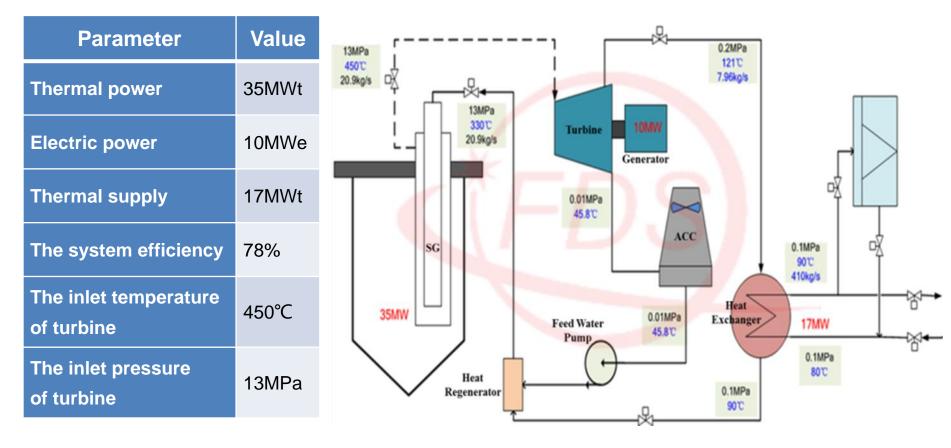
Main parameter of primary systerm

Spiral Steam Generator



Item	Shell side	Tube side
Power	35MW	
Medium	LBE	H2O
Temperature	495/375℃	330/450°C
Pressure		13MPa
Pressure drop	0.4kPa	
tube	Ф17×1.5mm ; L=21.2m	
Tube bundle Active height	~1460mm	
Outer diameter	Ф1750mm	

Passive decay heat removal system


- DHR1: Secondary loop (in normal condition)
- DHR2: Reactor vessel air cooling system (passive operation)

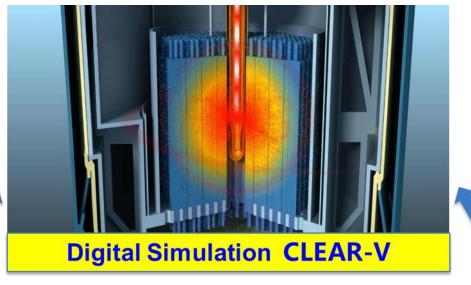
Heat and Power Cogeneration System

- Heat and power cogeneration mode (~4 months): (power) 10MW , (heat) 17MW
- Power generation mode (~8 months) : (power) 14MW

Contents

I. Strategy and Plan II. CLEAR-M Design Study III. R&D Progress 1. Key Technology R&D 2. Integrated Test

IV. Summary


Key Technologies

- Coolant Technology
- Key Components

- Materials and Fuel
- Operation and Control

Three Integrated Test Facilities

Physics Test CLEAR-0

Engineering Validation CLEAR-S

Further Implementation Activities

- ✓ Industrial park for lead-based reactor
 - laboratory under construction
- ✓ China Industry Innovation Alliance of Lead-based Reactors (CIIALER)
 - president member INEST/FDS Team, over 100 enterprises
- ✓ International Co-operative Alliance for Small LEad-based
 Fast Reactors (CASLER)
 - chair INEST/FDS Team, over 20 members

Contents

I. Strategy and Plan II. CLEAR-M Design Study III. R&D Progress 1. Key Technology R&D 2. Integrated Test IV.Summary

- **1. Lead-based reactor has many attractive features and may play an important role in the future energy supply.**
- 2. 10MWe China Lead-based Mini-reactor CLEAR-M has been proposed with three features of
 - Inherent safety, exclusion of severe accidents
 - Small modular, easily to transport
 - Long duration, refueling period
- 3. Wider and deeper international collaboration is encouraged.

Thanks for Your Attention!

Website: www.fds.org.cn E-mail: contact@fds.org.cn