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The gyrokinetic code XGC tries to simulate plasma particle dynamics as in real

experiment, according to Vlasov-Fokker Planck equation, below gyrofrequency

Mission: Use largest
computers to perform first-

principles-based studies ITER

* Total-f particle-in-cell

Neutral particle recycling

with atomic cross-sections
: : 2 (lons'that originate from
Logical sheath at material bd o <%/~ s0f have been removed
Non-Maxwellian plasma /. — ——_ W forclearer visualization)

NL Fokker-Planck operator —/ |

Heat, momentum & cooling
source/sink
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> Trillion particles: Requires
largeSt CompUterS Ion loss in ITER from inside the separatrix surface.

Attached plasma so far Visualization by Kwan-Liu Ma's research group, UC Davis.
moving toward detachment. Free parameter: neutral particle recycling rate (R=0.99) & O(limiter)=0.




XGC outputs all the drift motions, including ExB around X-point

XGC1 Axisymmetric
Potential (V)

%0  Forward Grad-B:
* Potential hill with higher
plasma density around X-point

* Lower T, around X-point
(pressure equilibration)

* Impurity particles from SOL
tend to enter into core through
the high-field side near X-point

« Backward Grad-B reverses the
ExB drift direction

05 055 06 065
R. {7} [Chang et al., PoP 2019]

a C-Mod, H-mode plasma



XGC automatically outputs the gyrokinetic heat-flux footprint

consistently with neoclassical, turbulent and neutrals physics
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Outline/Summary

The edge gyrokinetic code XGC says

« Today’s conventional tokamaks and SMA-ITER:
- Transport in pedestal is at ion neoclassical level

- Transport across separatrix is also at ion neoclassical level despite the "blobby” turbulence.
> Aq~0.63/B,y""° [Eich (~Goldston)]

15MA-ITER: Transport in pedestal and near-SOL is dominated by kinetic micro-turbulence

- Weak neoclassical ExB shearing due to small p; ,,/a cannot suppress turbulence [Kotchenreuther, Chang 2017]
- This also includes the weak neoclassical X-point orbit-loss driven ExB shearing rate [Chang 2002, 2017]

- XGC finds that A;X®Cis spread by kinetic trapped-electron turbulence by >6x A F"

- Machine Learning and Regression reveal a hidden parameter a/p;

- Consistently with the neoclassical ExB shearing physics

« A simple correction to Eich formula is identified (preliminary)
- Amanufactured JET plasma at higher |, and ITER plasma at | ,~12MA are needed to refine the formula

« To validate the XGC findings — trapped-electron turbulence — on today’s tokamaks, a turbulence-

dominant wide pedestal with high T.(sep) may be used: p; ,o/L,.4<<1 and weak v, at separatrix
- QH mode with edge ECH/LHH could be a good candidate?
- Ay measurements from EAST with edge LHH shows a significant A, broadening?



Kinetic effect: Neoclassical ion orbit excursion generates radial

electric field

« Banana width
~Pip X 1/B,q

* lon/electron banana width
ratio is (m;/m,)"2>>1

- Radial charge separation

- (Sheared) radial electric field
generation
[Chang, PoP2004]

- Suppresses turbulence

* If pip/L>0, neoclassical E; 20




Kinetic effect: Neoclassical X-point orbit loss generates E,-layer and toroidal
rotation in the edge, from ion orbit drift (1/B,)

* Bp=0 at magnetic X-point and is small around it.

- Weak poloidal ion rotation
— Confinement is lost = ion orbit loss

- Negative charge within ion banana width A, inside separatrix

—> strong E<0 in A, layer

« Strong E, or toroidal rotation creates steep Vp (force balance,

electrostatic confinement) - pedestal
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XGC says: with alp; ,, becoming very large, hence the neoclassical ExB shearing

rate becoming weak, the 15MA ITER pedestal becomes turbulence-dominant

= A new turbulence-dominant pedestal 8 FX1049N“["“*\-\ , r -
profile is established in XGC1 in the [ Initial (IAEA2016)
pedestal-turbulence self-organization 77 i ™" 1706 step
time (~1ms): but only a “wiggly” energy o N . Initial input from [TER 10
balance has been achieved yet. o S, MR
* n,pedestal is ~2x milder thanthe @ 5| Turbulence-limited 5 Pedesal |
MHD-limited profile. =) Wide peciasid) i MR B——
>4 for ~¥1 ms (~pedestal |
= |TER at full-current may achieve a @ transport time) Y
significant H-mode pedestal height that 8 3+ '
* |s only 10% lower than the
operation design value, 21 |
« But, mild enough not to provoke 3 Pedestal is supported mostly by X-point orbit-
the usual ELMs from peeling- loss-generated toroidal flow, not by Er.
ballooning modes. 0 [ t 1 1
= More simulations will be performed 0.8 0.85 0.9 0.95 1 1.05
on world #1 Summit, to confirm this Un

important result further.



Predictions from gyrokinetic XGC agree with A,'#(Eich) on existing tokamaks,
but not on 15MA ITER.

* lon drift-motion dominant x1/B,,

 But, the same code predicts A,(XGC)
>6A4(Eich) for 1SMA ITER

o Confirmed via multiple attempts

ITER=53 ¢

15MA » High-current C-Mod experiments
have B, similar to 1SMA ITER

o Both experiment and XGC showed A,
~ A,**(Eich): Is this a bifurcation?

o Hidden parameters, or something is
wrong: simulation has been confirmed
multiple times

1.4MA C-Mad
4 e XGC on NSTX-U at 2MA also
O ‘ﬁ( produced a wider A,
1.0 1.2  But, not at 1.5MA

« Hidden parameters, again?




XGC: Electron heat-spread by kinetic trapped electron modes is the suspect

« Fact: pi,/a 20 in 15MAITER Yyields little neoclassical ExB shearing,
« Fact: (2a/R)"2 1 in NSTX-U with warm T, yields TEM turbulence

ITER SMA ITER 15MA
0.7F T T T . " — 0.2
L o157 TEM streamers are the
Wil T UNOCS suspect. ITGs do not
:: 117, o penetrated into SOL
T os wl 1| | [Chang, 2009].
N . ik 0 5
04F 4,:_.\\ . F 1-0.05
XGC: Similar to blobs T 0.1 ~» XGC found a mixed TEM-
in today’s conventional i, ~ blob turbulence structure
aspect tokamaks l‘ 015 on 2MA NSTX-U
i TIQS l; 8:]5 Bll 8l15 82 8;’5 —02 . 818 B19 820 821 BN
R (m) R (m)
Isolated “blobby” turbulence Connected “streamer”-type turbulence
(with strong sheared-ExB flow across (with weak sheared-ExB flow across

separatrix) separatrix)



Machine learning reveals trapped electron interaction with
turbulence in the 15MA ITER edge (R.M. Churchill)

. : Summit data, NERSC
A strong non-adiabatic electron response found across ( )

the separatrix: characteristics of TEMs. Y
NERSC Spor‘llg

= K-means clustering, with K=6
= At a higher energy band, trapped electrons
show correlated response to turbulence
* Another sign of CTEM turbulence

= Because of the high w«~v(p/L) around the
separatrix, q needs to be high for precession
resonance by trapped electrons:
Vprecess~V(p/ R)(B/Bp)

—> easier excitation of Collisionless trapped electron 0 V||/ Vih

modes (CTEMSs) just inside the separatrix, yy=0.98- B
1, where VP, is high.
: ¢

Vprecess
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Looking for hidden parameters from CTEM physics understanding

- Large a/p; o, Wweakens the neoclassical ExB shearing rate - stronger TEM

A(XGC) (mm)
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Aq(XGC) vs Bpol
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In the present conventional aspect-ratio
tokamaks, A,(XGC) follows A, (Eich).

However, Ay(XGC) shows a discontinuity (of
multiple solutions) between high-lp C-Mod
and 15MA ITER.

14

12

1

(o)} (o] o

Ao(XGC) B 19/0.63

2

0

Aq*Bpol*1.19 vs Bpol*a/pi,pol

*
y = 5E-05x2 - 0.0098x + 1.2331
R>=0.9939 ’
Excel = Anchored
.~ Machine learning
\ using Eureqga
A(XGC) = 0.63B -1
[1.0+(10°B1 a/pi por)* ]
. JET4S5- e, S
'*"“'"’-7-‘-‘.‘.::.;,'.::.'.'.: """""""""""""""""""" E‘[Ch """"""""""""""" >
C-Mod
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Bpol a/ pi,pol

* When we use B, a/p; , as the scaling variable,

- A(XGC) in the present tokamaks still
follows A,(Eich)

- and the discontinuity from high-Ip C-Mod to
15MA ITER disappears
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Moving forward for a more accurate A,-scaling law towards ITER

Requires a large compute time on Summit

14
Aq*Bpol™1.19 vs Bpol*a/pi1,pol
12 *
8 10 y = 5E-05x2 - 0.0098x + 1.2331 /7
g R*=0.9939
— 8
E
m o6 | Apchored |
5 Machine learning
O 4 (Eureqa)
g% . A(XGC) = 0.63B 19
< 2 JET45 ’ [1'O+(10_2'5Bp01 a/pi,p01)4 ]
P ..,.,_’._._.___._._._'..._._._._._..._._::‘_'_._ P i 1 /
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Further refinement
using machine
learning will be
performed after
more simulations.

We need at least a couple more data points between the high-lp JET and the full-B ITER
- Collaboration with JET and ITER teams needed to build some artificial plasma and B equilibriums
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How do we validate the TEM broadening of A, in existing tokamaks?

Most of the NSTX-U edge electrons are in banana regimes - Strong CTEM drive if v.«~v..<1 : validated

Ao(XGC) B, 19/0.63
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0
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L(XGC) for 2MA NSTX-U shows ~2xA,(Eich)

Nexn <1 at W=0.99, most of the electrons are banana
trapped

Edge turbulence across separatrix 1s mixture of blobs
and streamers 2 TEM

A((XGC) B, 19/0.63

14
y =Aq(XGC)*B pol*1.19
12 | x=B_pol*a/tho_i,pol*[1+a®["0.5/v-n])] o
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4 NSTX-U 2MA is the e DIII-D
only point that moved C-Mod
2 > ® JET
e® °
0
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Bpol a/ pi,pol [ 1 +OL®]

O represents CTEM threshold

Assume CTEM threshold ~ (a/R)!?/v >
Fit a and 1 to make ®=1 for NSTX-U 2MA, & 0 for 1.5SMA
- 0=2 and n=1.75 have been chosen
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How do we validate the TEM broadening of A, in existing tokamaks?

500

» Look for experiments with “ITER-similar” edge condition

Turbulence-limited pedestal: large L/p,,
Low v.* <1 around the magnetic separatrix (using qgs)

- Can we study the QH mode edge plasma with low torque input?

Edge ECH/LHH can be helpful to reduce v,*<1, given the
experimental observations that the pedestal T, increases more
than T, does in QH.

= Could the broader A, observed in EAST [Wan2016, Zhang 2016;
Deng2018], with Lower Hybrid Heating in edge, be an example for
the kinetic trapped-electron-mode broadening?

T.(sep)~150eV, n,(sep)~1x101"m-3 2 v *<1

A€ ~1.7 A Feh : qualitatively agrees with experimental observation

Low torque input

Such a broadening was not seen without edge RF heating
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XGC suggests that the wide A, ITER is not from a turbulence bifurcation,

but a gradual transition: supported by experimental measurement on EAST?

DIII-D (XGC: Figures not to scale) EAST div-LP data, LSN, / =0.4 MA
0.03 - 1o 18 v T v T o ¥ - v
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The edge gyrokinetic code XGC says

« Today’s conventional tokamaks and SMA-ITER:
- Transport in pedestal is at ion neoclassical level

- Transport across separatrix is also at ion neoclassical level despite the "blobby” turbulence.
> Aq~0.63/B,y""° [Eich (~Goldston)]

15MA-ITER: Transport in pedestal and near-SOL is dominated by kinetic micro-turbulence

- Weak neoclassical ExB shearing due to small p; ,,/a cannot suppress turbulence [Kotchenreuther, Chang 2017]
- This also includes the weak neoclassical X-point orbit-loss driven ExB shearing rate [Chang 2002, 2017]

- XGC finds that A;X®Cis spread by kinetic trapped-electron turbulence by >6x A F"

- Machine Learning and Regression reveal a hidden parameter a/p;

- Consistently with the neoclassical ExB shearing physics

« A simple correction to Eich formula is identified (preliminary)
- Amanufactured JET plasma at higher |, and ITER plasma at | ,~12MA are needed to refine the formula

« To validate the XGC findings — trapped-electron turbulence — on today’s tokamaks, a turbulence-

dominant wide pedestal with high T.(sep) may be used: p; ,o/L,.4<<1 and weak v, at separatrix
- QH mode with edge ECH/LHH could be a good candidate?
- Ay measurements from EAST with edge LHH shows a significant A, broadening?
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