Overview on Density Pedestal Structure: Role of Fueling versus Transport

Saskia Mordijck (W&M)

Motivation

• Models based on pressure profile constraints from KBM and peeling-ballooning modes capture global pedestal pressure structure well

Motivation

- Models based on pressure profile constraints from KBM and peeling-ballooning modes capture global pedestal pressure structure well
- Currently these models require input:
 - Separatrix density
 - Ratio of ne_{ped}/ne_{sep}

Motivation

- Models based on pressure profile constraints from KBM and peeling-ballooning modes capture global pedestal pressure structure well
- Currently these models require input:
 - Separatrix density
 - Ratio of ne_{ped}/ne_{sep}
- What is the role of 'fueling' versus transport?
 - Future machines will have 'opaque' SOL and limit fueling

P.B. Snyder et al NF 51 103016 (2011) P.B. Snyder et al. NF 59 (2019) 086017

What sets the pedestal density profile?

What sets the pedestal density profile? Role of transport

What sets the pedestal density profile? Role of transport

What sets the pedestal density profile? Role of transport

Does the penetration depth of the neutrals determine the electron density pedestal width?

Does the penetration depth of the neutrals determine the electron density pedestal width?

- Model assumes particle balance
 - Constant D and no v for electron transport
 - Exponential decay ne in SOL
 - Flux expansion parameter for neutral: *E*
 - Energy of neutrals ~ energy of the ions: V_n
- Free parameters to 'fit' model to the data

 $\Delta n_e = \frac{2 V_n}{\sigma V_e n_{e_{per}}}$

Simplistic 1D model finds good agreement for wide range of DIII-D discharges

Model 1: $\nabla n_e \sim \nabla n_0$ $\rightarrow n_{e_{ped}} \sim \frac{1}{2}$

$$\Delta n_e = \frac{2 \boldsymbol{V_n}}{\sigma V_e n_{e_{ped}} \boldsymbol{E}}$$

Similar as on DIII-D, if the 'drift' speed of the neutrals is reduced good agreement is found on MAST

However to match fueling experiments on JET, the 'poloidal localization' factor needs to be adapted

- E depends on
 - Plasma shape
 - Fueling levels
- Model could not reproduce different isotope experiments

C-Mod measurements show reduced neutral penetration depth does not result in reduced pedestal width

Multi-machine database shows no linear trend of $\Delta n_e \sim 1/n_{e_{ved}}$ and indicates a shift in pedestal structure

M.N.A. Beurskens et al Phys. Plasmas 18, 056120 (2011)

P A Schneider et al 2012 Plasma Phys. Control. Fusion 54 105009

Multi-machine database shows no linear trend of $\Delta n_e \sim 1/n_{e_{ved}}$ and indicates a shift in pedestal structure

M.N.A. Beurskens et al Phys. Plasmas 18, 056120 (2011)

P A Schneider et al 2012 Plasma Phys. Control. Fusion 54 105009

Multi-machine database shows no linear trend of $\Delta n_e \sim 1/n_{e_{ped}}$ and indicates a shift in pedestal structure

M.N.A. Beurskens et al Phys. Plasmas 18, 056120 (2011)

Multi-machine database shows no linear trend of $\Delta n_e \sim 1/n_{e_{ped}}$ and indicates a shift in pedestal structure

M.N.A. Beurskens et al Phys. Plasmas 18, 056120 (2011)

Multi-machine database shows no linear trend of $\Delta n_e \sim 1/n_{e_{ped}}$ and indicates a shift in pedestal structure

M.N.A. Beurskens et al Phys. Plasmas 18, 056120 (2011)

Dedicated fueling studies on AUG and JET show a shift outward of the density pedestal

Model 2: $n_0 \uparrow \Rightarrow$ shift out in SOL shift $n_{e_{ped}}$ out in SOL $\Rightarrow \sim \Delta(n_e - T_e) \neq 0$

M G Dunne et al 2017 PPCF 59 014017

Dedicated fueling studies on AUG and JET show a shift outward of the density pedestal

Dedicated fueling studies on AUG and JET show a shift outward of the density pedestal

M G Dunne et al 2017 PPCF 59 014017 E. Stefanikova et al 2018 NF 58 056010

The shift in the pedestal outward was also observed in DIII-D for an open divertor configuration

A trend in outward shift cannot be observed if divertor geometry is altered in DIII-D plasmas

Outward shift closely correlated to increasing $\eta_e = L_n/L_{Te}$ for multiple divertor geometries, power and fueling levels in DIII-D

H.Q. Wang et al 2018 Nucl. Fusion 58 096014

Outward shift closely correlated to increasing $\eta_e = L_n/L_{Te}$ for multiple divertor geometries, power and fueling levels in DIII-D

Suggestive that underlying changes in transport cannot be neglected

Integrated predictive modeling for ITER based on understanding of current devices result in disappearance of density pedestal structure

- Integrated modeling using JINTRAC & SOLPS to predict ITER profiles
- The model relies for transport on a diffusion coefficient
- Increases in fueling does not result in a shift, nor an increase of the density gradient
- Need to perform experiments to investigate the role of opacity

Low opacity

High opacity

Opacity ~ $n_e x a \sim 1/2(n_{e,sep}+n_{e,ped})a$

Low opacity

High opacity

Low opacity

High opacity

Normalized increases in gas fueling result in an increase in the SOL density independent of opacity levels

Normalized increases in gas fueling result in a much more modest increase of the separatrix density

Normalized increases in gas fueling are similar for the pedestal as well as the separatrix

Low opacity

Lower n_e

Lower n_e

These experiments confirm prior results and modeling from C-Mod: Neutral penetration decreases with increasing n_{e,PED}

Changing the modeling for C-Mod like conditions to DIII-D like conditions, we observe similar trends as shown experimentally

These experiments confirm prior results and modeling from C-Mod: Neutral penetration decreases with increasing neped

So what will the pedestal profile be like? A need to measure and validate neutral source, to study transport

ENDD diagnostic measurements on NSTX-U have been compared to DEGAS modeling of the neutral sources

- ENDD diagnostic measures D_α
- Direct comparisons of DEGAS to measurements show good agreement
- DEGAS results are very sensitive to electron density and temperature in the far SOL

Conclusions

- Density pedestal currently influenced by neutral penetration
- However density pedestal structure cannot be solely determined by fueling
- Opaque SOL conditions indicate that 'peaked' pedestal profiles are possible

Good news for ITER/DEMO

 However: we need to identify the role of various transport contribution to the particle flux, which means measure neutrals
and validate edge codes