

Investigation of divertor operation for Japanese DEMO under low density SOL and large power exhaust of $P_{sep}/R \sim 30$ MW/m level

<u>N. Asakura</u>, Y. Homma¹, K. Hoshino², Y. Sakamoto¹, and the Joint Special Design Team for Fusion DEMO

National Institutes for Quantum and Radiological Science and Technology (QST), Naka Fusion Institute ¹⁾ QST, Rokkasho Fusion Institute ²⁾ Graduate School of Science and Technology, Keio University

Third Technical Meeting on Divertor Concepts, IAEA Headquarters, Vienna, Austria, 4–7 November 2019

1. Introduction: JA-DEMO design and power exhaust concept

- 2. Divertor power exhaust simulation for JA DEMO
- **3.** Divertor operation in low SOL density
- 4. note: Heat flux profiles at SOL and target
- 5. Summary

1. JA-DEMO design and power exhaust concept Major radius: 8.5m, Fusion power: 1.5GW-level, steady-state (year-long)

Influence of impurity seeding on original JA DEMO design (System code prediction) [1,2]:

- Fusion power is reduced <1.5GW due to fuel dilution.
- Higher HH-factor (~1.5) is required to maintain $W_{\rm th}$ and $\beta_{\rm N}$.
- ⇒ Proposal of increasing I_p , P_{fus} with κ_{95} for the same R_p , a_p and q_{eff} without requesting higher plasma performance of HH_{98y2}>1.3.
- Conducting shell (control of vertical stability) is improved.

[1]Sakamoto, et al. IAEA FEC 2014,
[2]Tobita, et al. Fusion Sci. Technol. 72 (2018) 537
[3]Asakura, et al. Nucl. Fusion 57 (2017) 126050

|--|

	Parameters	JA DEMO [3] (←[1]) high-κ &Seeding	ITER (inductive)
figuration	R_p / a_p (m)	8.5 / 2.42	6.2 / 2.0
	А	3.5	3.1
	К ₉₅	1.75 (←1.65)	(1.70)
Cor	q ₉₅	4.1	3
ze &	I _p (MA)	13.5 (←12.3)	14
Si	B _T / B _T ^{max} (T)	5.94 / 12.1	5.3 / 12
Absolute Performance	Operation	Steady-state	~400 s
	P _{fusion} (MW)	1694 (←1462)	500
	P _{gross} (MWe)	<mark>588</mark> (←507)	
	P _{aux} (MW)	<mark>96</mark> (←84)	73
	Q	18	10
Normalized Performance	HH _{98y2}	1.3	1.0
	β _N	3.4	1.8
	f _{BS}	0.6	0.15
	n_/n ^{GW}	1.2	~0.9

Power exhaust and Plasma performance in impurity seeding ⁴

• JA-DEMO: System-code predicts that plasma performance of HH_{98y2} ~1.3, β_N ~3.4, f_{BS} ~0.6 in Ar seeding (n_{Ar}/n_e ~0.6%) required for the steady-state operation is obtained by increasing $P_{fus}(1.7\text{GW})$, I_p (13.5MA), $n_e(8.6 \times 10^{19} \text{m}^{-3})$ and κ_{95} (1.75).

 $\Rightarrow f_{\rm rad}^{\rm main} = P_{\rm rad}^{\rm main}/P_{\rm heat} \sim 0.4: \text{ slightly larger than ITER} \Rightarrow \text{Reducing } P_{\rm sep} \text{ than original (still } 2xP_{\rm LH-th})$

[4] **P**_{LH-th}: Martin et al J. Phys.: Conf. Ser. (2008).

	Parameters	JA DEMO[3] Increase K ₉₅ &seeding	JA DEMO1[1,2] Original	
Density	line- <i>n</i> e ^{main} (10 ²⁰ m ⁻³)	0.86	0.78	
	<i>n</i> ^{GW} (10 ²⁰ m ⁻³)	0.73	0.67	
Power exhaust	n _{imp} ^{main} /n _e (%)	0.6 (Ar)	0.25 (Ar)	
	P _{fusion} (MW)	1694	1462	
	P _{aux} (MW)	96	84	
	P _{heat} (MW)	435	376	
	P _{rad} ^{main} (MW)	177	82	
	P _{rad} ^{main} /P _{heat}	0.41	0.22	
	P _{sep} (MW)	<u>258</u>	<u>294</u>	
	P _{sep} /R _p (MWm ⁻¹)	30	35	

Power exhaust and divertor concept of JA and EU DEMOs

Divertor power handling is determined by requirements of f_{rad}^{main} and plasma performance.

Common view of Power exhaust scenario in JA and EU:

- High radiation fraction ($f_{rad} = P_{rad}/P_{heat} \approx 80\%$) is required, while f_{rad}^{main} and $f_{rad}^{sol+div}$ are different: Note: EU-DEMO (pulse): ITER-level performance ($HH_{98v2} \approx 1.1$, $\beta_N \approx 2.6$) in Xe&Ar seeding achieves $P_{el.net} \approx 0.5$ GW ($P_{el.gross} \approx 0.91$ GW)
 - $\Rightarrow increasing f_{rad}^{main} \sim 0.65 \text{ in order to reduce } P_{sep} \sim 1.2 \text{xP}_{LH-th} \quad [5] \text{ Wenninger, et al. Nucl. Fusion 57 (2017) 016011.}$

Another common issue: Line-ave. n_e is lower than ITER (1x10²⁰m⁻³) due to lower n^{GW} .

• Plasma detachment at low $n_e^{\text{sep}} \sim n_e^{\text{ped}}/3$ (2-3x10¹⁹m⁻³) is required.

SONIC code: a suite of integrated divertor codes Applying to simulate JT-60U experiments/JT-60SA and JA DEMO design

SONIC code consists of **SOLDOR** (fluid transport simulation of plasma), **NEUT2D** (kinetic transport simulation for neutrals), and **IMPMC** (kinetic transport simulation for intrinsic/seeded impurity).

SONIC references: [7] K. Shimizu, et al., J. Nucl. Mater. 2003, [8] H. Kawashima, et al. J. Plasma Fusion Res. 2006

2. Divertor power exhaust simulation for JA DEMO: (Reference case) Divertor leg length: L_{div}=1.6m, P_{sep}~235MW

• At core-edge boundary r/a=0.95: exhausted power (P_{out} = 250 MW), particle ($\Gamma_{out}^{D+}=1\times10^{22} \text{ s}^{-1}$) • Covering the connecting SOL between inner and outer divertors: $r^{mid} \leq 3.2 \text{ cm}$.

- **Divertor leg is 1.6 m (1.6 times longer than ITER): it is reduced from 2 m case (2015)** $T_e^{\text{sep}} \& T_i^{\text{sep}}$ increase to 0.37 & 0.83 keV, which are 2-3 times larger than ITER $\Rightarrow \lambda_{q//} = 2.4$ mm for the same χ (=1m²/s) and D (=0.3m²/s) as ITER ($\lambda_{q//} = 3.4$ mm)[9].
- Reduction to half values ($\chi = 0.5 \text{m}^2/\text{s}$, $D = 0.15 \text{m}^2/\text{s}$) $\Rightarrow \lambda_{q//}$ is reduced to 1.9mm.
- $q_{//}$ profile is still wider than Eich's scaling[10] (~1mm) and Goldston's model[11] (~1.5mm).

Reference scenario of the power exhaust (SONIC) D gas puff & Ar seeding $\Rightarrow P_{rad}^{SOL} + P_{rad}^{div} = 186MW$

8

Detachment plasma is produced: q_{target} **is less than 10MWm⁻²** ⁹ "Partially attached" is produced in the outer divertor

Inner target: peak $q_{\text{target}} \sim 5 \text{ MWm}^{-2}$, where ionization still occurs at $T_{\text{e}} = T_i \sim 1 \text{ eV}$.

- Surface recombination is a dominant ⇒ Volume-recombination is not significant.
 Significant reduction in ion flux (seen in experiments) is not modelled quantitatively.
- Outer target: peak $q_{\text{target}} \sim 5 \text{ MWm}^{-2}$ is seen at "attached" region ($r_{\text{target}} > 12 \text{ cm}$).

3. Divertor operation in low SOL density $(n_e^{\text{sep}} = 2 - 3 \times 10^{19} \text{m}^{-3})$ ¹⁰ Heat load can be reduced less than engineering restriction $(q_{\text{target}} \le 10 \text{MWm}^{-2})$

Reference: $P_{sep} = P_{out} - P_{rad}^{edge} \sim 235 \text{MW} \& f_{rad}^{sol+div} = (P_{rad}^{sol} + P_{rad}^{div}) / P_{sep}^{out} \sim 0.78$, and Severe cases: high $P_{sep}^{out} \sim 283 \text{MW}$ ($f_{rad}^{sol+div} \sim 0.78$) and low $f_{rad}^{sol+div} \sim 0.66$ ($P_{sep}^{out} \sim 236 \text{MW}$) are studied. Decressing deatchment width, and increasing T_i , T_e at the attached plasma. $\Rightarrow q_{target}$ is increased, and a margin of the power handling ($\leq 10 \text{ MWm}^{-2}$) is decreased. low n_e^{sep} (2-3x10¹⁹m⁻³) is acceptable, but higher n_e^{sep} is required for the low $f_{rad}^{sol+div}$ case.

Influence of plasma diffusion on heat flux and plasma profiles: 11 Increase in q_{target} is large in Low $f_{\text{rad}}^{\text{sol+div}}$ (0.66) case than high $f_{\text{rad}}^{\text{sol+div}}$ (0.78)

- Simulations with reducing χ and D to 1/2 ($\chi_e = \chi_i = 0.5 \text{m}^2/\text{s}$, $D = 0.15 \text{m}^2/\text{s}$) $\lambda_{ge//}$ is reduced from 2.4 to 1.9 mm, but still larger than Eich's B_p -scaling (1.1 mm).
- Detachment region is reduced from 10 to 7 cm \Rightarrow peak- q_{target} is increased.
- Divertor heat load in High $f_{rad}^{sol+div}$ (~0.78): Reference and High P_{sep} cases are still acceptable, but divertor operation in the Low n_e^{sep} range (2-3x10¹⁹ m⁻³) is difficult for the low $f_{rad}^{sol+div}$ case.

Reduction in T_e^{div} and T_i^{div} at attached area is required 12 Reduction in $T_e \& T_i$ of attached plasma is necessary such as "pronounced detachment: AUG"

Partially detachment for *Reference* and *high* P_{sep} cases: Reduction in T_e^{div} to 20-30 eV is expected in the low n_e^{sep} . \Rightarrow Evaluation of net-erosion rate and improvement of its accuracy are required. For the low $f_{rad}^{sol+div}$, decreasing detachment width, and reduction in T_e^{div} is small. Experiment data and Modeling of erosion & transport (finite-Larmor effect[12]) must be improved. **Impurity concentration in SOL** $(c_{Ar}^{SOL}=n_{Ar}^{sol}/n_e^{sol})$: Both Increasing $P_{rad}^{sol+div}$ and Controlling the core plasma dilution are required $\Rightarrow c_{Ar}^{SOL}(0.4-0.6\%)$ is comparable to c_{Ar}^{main} in system code.

Peak T_e at attached region Ar concentration at SOL Simple estimation of net-erosion with 90% re-deposition

• Net erosion (Δd) becomes a half of W-width (d:5mm), if T_e^{div} 20eV at attached area.

Net erosion/year(mm)	T _e =5eV	10eV	20eV
DEMO (steady state)	0.15	1	2.5
ITER(400s, 2000 shots)	0.004	0.026	0.064

attach plasma $\Gamma_i \sim 10^{23} \text{ m}^{-2}\text{s}^{-1}$, $\sim 20\text{eV} < \text{Z} >=4$, n_{Ar}/n_i =0.2%, <u>assuming net erosion: $R_{\text{net}} = 0.1$ </u> Sputtering yield with Ar Y_iC_i $\sim 4 \times 10^{-4}$ (at 20eV) [13]

 $\Delta d \text{ (mm)} = 4.95 \times 10^{-19} R_{net} * Y_i C_i * \Gamma_i * t (year)$

[12] Y. Homma, et al., Nucl. Mater. Energy. (2017). [13] A. Kallenbach, et al., J. Nucl. Mat. (2011).

4. Heat flux profile at SOL and target Large *q*_{//} near separatrix is reduced in *the partially detached divertor*

- SOL heat flux near the separatrix ($\lambda_q^{mid} = 2.4 \text{ mm at X-point}$) is reduced at the target.
- *T_e* and *q_{e//}* profiles near X-point are similar for 3 cases (at the same *n_e<sup>sep~2.0x10¹⁹m⁻³*)
 ⇔ *T_i* in the outer flux surfaces (*r^{mid}* = 8-20 mm) is increased for severe cases, and total *q_{//}* is increased: convective transport may change.
 </sup>

T_e , T_i and $q_{//}$ near X_p for 3 cases (same n_e^{sep})

Characteristics of heat load profiles in partial detached divertor ¹⁴ applying Eich's convolution function, introducing detach-attach boundary (r_{det})

- Eich-fit was tied to apply to *thermal plasma* and *total heat load profiles*: Same flux expansion on target: f_x (=11-15) is given. Cross radius: s₀=0.011m (r_{cross}=0.14m) is fixed.
 - e-folding length: λ_q^{mid} is slightly decrease from 8 to 7 mm Gaussian function: S^{mid} is increased from 2.5 to 3.5 mm Zero heat load: q_0 is increased from 5.3 to 6.8 MWm⁻² and Background heat load: $q_{BG} = 1.1$ MWm⁻² is added
- Eich-fit can be applicable to *both thermal plasma* and *total heat loa profiles (in attached plasma region)*, while the fit function in the detached region (incl. the surface recomb., radiation, neutral loads) was not appropriate.

Eich-fit function: convolution of exponential and gaussian.

$$q(\bar{s}) = \frac{q_0}{2} \exp\left(\left(\frac{S}{2\lambda_q}\right)^2 - \frac{\bar{s}}{\lambda_q f_x}\right) \cdot \operatorname{erfc}\left(\frac{S}{2\lambda_q} - \frac{\bar{s}}{Sf_x}\right) + q_{BG}$$

[14] T. Eich, et al. Nucl. Fusion 53 (2013) 093031. [15] T. Eich, et al. J. Nucl. Mater. 438 (2013) S72

5. Summary: Power exhaust and divertor design for JA DEMO

15

Recent progress of Japanese DEMO design and Divertor concept were summarized. High plasma performance of HH_{98y2} ~1.3, β_N ~3.4, f_{BS} ~0.6, n_e/n^{GW} ~1.2 is expected with $(n_{Ar}/n_e)^{main} = 0.6\%$ by impurity (Ar) seeding ($P_{rad}^{main}/P_{heat}=0.41$, slightly larger than ITER).

- Divertor power handling of reference concept (P_{sep}~250 MW, P_{sep}/R~29 MW/m) and <u>under sever</u> conditions (P_{sep}, P_{rad}^{sol+div}/P_{sep}, χ) was studied in the *expecting low SOL* n_e (~1/3x n_e^{main} =2-3x10¹⁹m⁻³).
- Plasma performance in the long-leg divertor by SONIC simulation:
- Partial detachment (outer) was produced for $P_{rad}^{SOL+div}/P_{heat} = 0.43$ ($P_{rad}^{SOL+div}/P_{sep} = 0.78$) \Rightarrow large $q_{//}$ near SOL ($r^{mid} < 1 \text{ cm}$) can be reduced by the partial detachment, and peak- q_{target} at attached region is also reduced less than 10 MWm⁻², which was simulated under *sever* conditions, *i.e.* increasing P_{sep} by 20% or reducing $P_{rad}^{SOL+div}/P_{sep}$ by 10%.
- Heat flux profile reducing $\chi = 1 \Rightarrow 0.5 \text{ m}^2/\text{s}$: λ_q^{SOL} (~2mm) is still larger than Eich's scaling \Rightarrow Impact of reducing χ , particularly for smaller $P_{rad}^{SOL+div}/P_{sep}$, is serious.
- Net-erosion in the partially attached area (T_e=20-30eV) will be a critical life-time issue of W-target in year-long operation ⇒ improvement of W transport model is on going.
- Impurity concentration in SOL: $c_{Ar}^{SOL}(0.4-0.6\%)$ is so far comparable to c_{Ar}^{main} in system code. Increasing $P_{rad}^{sol+div}$ with controlling dilution of the core plasma is required.

Summary (2): Some issues in SONIC simulation and modelling ¹⁶

- **SONIC code** (re-structuring to *Multi-Process Multi-Data*, i.e *multi-species*, renewing *plasma fluid-code including drifts*) and **modelling for DEMO plasma** (*erastic collision of atom and molecule*, *photon absorption*, *thermal force on impurity in low-collisional SOL*) are developped.
- \Rightarrow Power exhaust and divertor design, consistent with He exhaust, will be revised.
- \Rightarrow Restructure of the plasma fluid code (SOLDOR in SONIC) incorporating drifts is on going.
- Improvement of simulation on the heat load profile *at the partial detachment* is necessary:
- Plasma modelling : distributions of diffusion coefficients, momentum loss process, etc.
- Empirical scaling of the detached heat load and the peak value will be used for design.
- Control of radiation peak and detachment front *in the long-leg* is high priority issue:
- Impurity transport in SOL (low collision) divertor (high collisional), and the shielding efficiency (thermal force vs friction force) are key issues to design the seeding scenario and divertor: *Classical formula of thermal force on impurity* is modified for low collisionality SOL.

Empirical scaling of heat load profile in attach divertor (Eich's scaling): plasma heat flux is dominat than recombination &radiation

Inter-ELM heat flux profiles in H –mode are fitted by a convolution of exponential and gaussian functions \Rightarrow Diffusion in SOL (λ_q) and dissipation in divertor (S) are assumed.

Eich-fit function $q(\bar{s}) = \frac{q_0}{2} \exp\left(\left(\frac{S}{2\lambda_q}\right)^2 - \frac{\bar{s}}{\lambda_q f_x}\right) \cdot \operatorname{erfc}\left(\frac{S}{2\lambda_q} - \frac{\bar{s}}{Sf_x}\right) + q_{BG}$ Distance from strike point on target: $\bar{s} = s - s_0 = (R_{sep} - R) \cdot f_x$. Flux expansion on target: f_x e-fold length of midplane $q_{//2}$ profile (common side): λ_q Gaussian function width (private region): S Average width of integrating q-profile: $\lambda_{int} \cong \lambda_q + 1.64 \cdot S$ "diffusion of SOL heat flux" vs **Decal length scaling of SOL heat flux** "dissipation in divertor" AUG-DivIIb (<S>=1.6mm) C-Mod AUG DIII-D JET S [mm] ہ_و [mm] NSTX 0.5 0.2 0.6 0.8

[1] T. Eich, et al. Nucl. Fusion 53 (2013) 093031. [2] T. Eich, et al. J. Nucl. Mater. 438 (2013) S72

Development in simulation code and modelling

 Modeling framework using MPMD (Multiple-Program Multiple-Data) approach and MPI (Message Passing Interface) data exchange scheme has been developed for

- (1) Each code can be independently developed, added and replaced with much smaller effort.
- (2) Improved numerical efficiency, e.g. number of CPUs used for each code can be arbitrarily adjusted to optimize performance.
- ⇒Power exhaust of DEMO divertor, consistent with Ar and He transports, is simulated (2018). Introduction of drift effects is in progress (2018-2020)

Each code can be independently developed. Developments of modelling are in progress to evaluate influences under the DEMO condition:

- Elastic collision model of D-D, D-D2, D2-D2, D-He
- Photon transport (SlimCS: done \Rightarrow JA DEMO2014)

