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ü The method initially proposed by Karney&Stotler can be seen as the implementation of a spatially 
hybrid scheme. Complementary with macro/micro approach developed by Horsten et al.

ü First results encouraging but robustness with model parameters need to be investigated further.
ü Could be seen as a convergence accelerator (subsequent fine tuning with kinetic only allowing 

one to assess modeling errors related to the hybrid model) 
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• Modelling of edge plasma through fluid plasma solver (like SolEdge2D [1]) coupled to kinetic Monte Carlo code for neutrals (like Eirene [2]).
• In most of the simulation domain Knudsen number !" ≡ $. &. './) for neutrals much larger than one, but may not be true near divertor targets 

in detached regime due to high plasma density (10,- − 10,/ $01) and low temperature (below 534)
• Neutrals undergo high number of charge-exchange and elastic collisions before getting ionized, so Monte Carlo codes inefficient/inaccurate
• Hybrid kinetic-fluid model for neutrals could improve performances of edge plasma codes

Motivation :

Hybrid model for Soledge2D:
ü Based on [1]: atom vdf f split into a kinetic part &5 and a fluid part &6, such that f=fF+fK

Soledge2D

Eirene

Fluid code

ev
ap

or
at

io
n

condensation

ü MC slow because of cx à make condensation more probable than cx in fluid areas 789:;∗ = > ⋅ "@ AB 8C with > ≫ 1 (here 7GHIJ∗ = 789:;
∗ ) 

ü fluid approximation valid for !" ≪ 1, so the shape of the factor F(Kn) determines whether mesh region is fluid or kinetic
So essentially this approach amounts to a spatially hybrid model with a dynamic boundary between fluid and kinetic domain, enforced 
by an immersed boundary technique similar to the penalization scheme implemented in Soledge2D.
ü boundary conditions discussed in the literature (analysis ongoing). Buffer region added to prevent “fluid/kinetic” oscillations.

ü Fluid breakdown parameter à local gradient length Knudsen number   !" = L

M
= HNO/(:Q RH ST)

VWX Y∥:[,Y]:[ /:[

ü Kn can be small in regions with no plasma or not dominated by cx à kinetic zone forced where "G = "@ ≤ "_@: and/or RH ST

RH Q`
≤ $a"

Hybrid simulations: comparison with fully kinetic case

References :

ITER test case (P. Tamain et al., and Refs. [5])
Pure H, bcdM = 20>f, self-consistent core density BC
g = 0.3$,/i , jG = j@ = 1$,/i
Be wall k = 1
1 pump below dome with k = 0.9928
2 puffs (top) with same rate 5.65 ⋅ 10,/30/i

reduction of 5 ÷ 30% average time for Eirene vs reference 
(note that the case considered is not troublesome when using EIRENE alone &
that the neutral fluid code is not parallelized yet )

Eirene Fluid code qrstu
Reference ü û û

Hyb-1 ü ü 0.01
Hyb-2 ü ü 0.05
Hyb-3 ü ü 0. 1
Hyb-4 ü ü 0.5
Hyb-5 ü ü 1.
Hyb-6 ü ü 5.

SEi approximated due to v6 = v@ assumption à possible error introduced 
in ion energy equation in fluid areas. Here not critical but likely to be case 
dependent … would be made more robust with an energy equation for 
neutrals
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Code package converged with the hybrid model

BUT negligible impact on the target profiles

Application	of	a	two-phases	hybrid	model	to	atom	transport	in	ITER	simulations
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ü Transition processes between kinetic and fluid phases introduced – evaporation & condensation
|6→Å = −7GHIJ&6 |Å→6 = −789:;&Å

ü Aim : condensation >> evaporation in highly collisionality regions (HCRs), i.e. f ~ fF~ Maxw., evaporation >> condensation in LCRs
At this point: choice of rates is arbitrary

ü Next step : collisionnal closure for moments of fF with the idea that fF/fK<<1 in regions where the later is not valid. 
Here two moments assuming Tn = Ti in the HCRs – capture momentum exchanges

fF is assumed purely Maxwellian
(appears explicitely in the equation for fK
+ fK=f-fF – positive definiteness of fK ?)

7 = Ö !" ⋅ 7∗

Implementation in Soledge2D-EIRENE:

ü Specifically developped fluid code based on HDG scheme, on the same 
grid as EIRENE [4]
ü Absorbing BC for fluid atoms at the wall, recycled as kinetic atoms/mol. 
Γ6→Å = RΓ6

0 = k ∫0 &âIC {6, v6 B⃗6 ⋅ ä"ãB⃗6
ü Molecules treated kinetically (hybrid may be needed too because of elastic collisions !)
ü Condensation implemented as an extra CX process with background fluid atoms
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Total plasma sources = kinetic sources + fluid sources


