Some implications of recent technology advances on divertor physics performance requirements of tokamak reactors

Peter Stangeby1 and Marco Wischmeier21111111211121112111211121121121212121212121222<td

Third IAEA Technical Meeting on Divertor Concepts 4-7 November 2019, IAEA Headquarters, Vienna, Austria

The rapid evolution of several advanced technologies

- being strongly pursued for major non-fusion applications, is
- potentially transformative
- for the
- divertor physics
- performance requirements of tokamak reactors:

3D printing etc. will increase power handling of solid divertor targets by increasing the contact area between coolant and solid surfaces, and by increasing turbulent heat transfer rates.

2. Advanced Robotics

- For non-demountable (not openable) toroidal field coils, e.g. ITER, internal components must be modular.
- <u>Problem</u>: larger gaps and misalignments than for a prefabricated, vertical-lift monolithic structure.
- \therefore to shadow-protect *edges*, power-handling *surfaces* have to be tilted. θ_{\perp} ~ 4.5° in ITER, c.f. ~ 1° in, e.g. DIII-D.
- **<u>Problem</u>**: greatly increased power load on *surfaces*.
- Advances in robotics could enable reduction of gaps & misalignments of modular structures.

3. High temperature superconductor, HTSC magnets

- HTSC magnets: potentially demountable, openable.
- Enables monolithic rather than modular structure.
- The entire, highly-aligned and robust monolithic internal structure, including the divertor, is pre-assembled and lowered in and out of place (vertical-lift), making possible safe use of small θ_⊥ i.e. edges not exposed.
- ARC with HTSC magnets and vertical-lift: $\theta_{\perp} \sim 1^{\circ}$.

Advanced technologies — divertor physics

- These high tech areas are being pursued for major, rapidly growing non-fusion applications.
- Robotics industry doubles every ~3 years. World-wide expenditures: $\$B116 (2019) \rightarrow \$B210 (2022, proj.)$
- Reactor design should assume these advances will be exploited.
- ITER design is now largely fixed, but advances in robotics and additive manufacture will undoubtedly be exploited to upgrade the ITER divertor, which is planned to be replaced.

Advanced technologies — divertor physics

- Advanced technologies are potentially transformative
 - for divertor physics requirements re the paramount

- I. Required plasma temperature, density at target,
- **II.** Required volumetric power dissipation in the edge,
- III. Value of 'upstream' SOL plasma density ($\rightarrow \overline{n}_e$).

I. n_t (T_t): divertor plasma n_{target} (T_{target}) for target survival re both <u>power-load</u> & erosion

- With smaller θ_{\perp} and/or
- higher power handling
- limits, it isn't necessary to
- go as deeply into
- detachment, i.e. to such low
- $T_{target} \rightarrow requires less edge radiation, reducing risk of$
- degrading confinement.

All expressions in poster are derived in Stangeby PPCF 60 (2018) 044022.

I. n_t (T_t): divertor plasma n_{target} (T_{target}) for target survival re both power-load & <u>erosion</u>

In green region: T_t is above sputtering thresholds; however, for high n_t, net erosion is suppressed by prompt redeposition.

I. n_t (T_t): divertor plasma n_{target} (T_{target}) for target survival re both power-load & erosion

II. Required volumetric power dissipation in the edge

With smaller θ_{\perp} and/or higher power handling capability, less edge radiation is required, reducing risk of degrading confinement.

II. Required volumetric power dissipation in the edge

With smaller θ_{\perp} and/or higher power handling capability, less edge radiation is required, reducing risk o degrading confinement.

		$\theta_{\perp} = 1^{o}$	$\theta_{\perp} = 1^{o}$	$\theta_{\perp} = 4.5^{\circ}$	$\theta_{\perp} = 4.5^{\circ}$
		q _{target-load} [10 MW/m ²]	q _{target-load} [20 MW/m ²]	q _{target-load} [10 MW/m ²]	q _{target-load} [20 MW/m ²]
	q _{∥u} [GW/m²]	$f_{pwr-diss}^{edge} =$	$f_{pwr-diss}^{edge} =$	$f_{pwr-diss}^{edge} =$	$f_{pwr-diss}^{edge} =$
	0.25			0.745	0.490
5	0.5	0.427		0.873	0.745
	0.75	0.618	0.236	0.915	0.830
	1	0.714	0.427	0.936	0.873
	1.5	0.809	0.618	0.958	0.915
f	3	0.905	0.809	0.979	0.958
	5	0.943	0.885	0.987	0.975
	10	0.943	0.943	0.994	0.987
	20	0.986	0.971	0.997	0.994

III. Value of 'upstream' SOL plasma density n_{eu} ($\rightarrow \overline{n_e}$)

- **Traditionally target quantities** (n₊, T₊) are considered to depend on the specified upstream ones (n_{eu}, q_{11u}).
- However, if target survival is made paramount then (n_t, T_t) get specified and therefore **n**_{eu} becomes a function of (T_{et} , θ_{\perp} , power-limit).

upstream density $n_{eu} \approx \overline{n}_{e}$

III. Value of 'upstream' SOL plasma density n_{eu} (\rightarrow $\bar{n_e}$)

Conclusion

- The rapid evolution of several advanced technologies being strongly pursued for major nonfusion applications, is potentially transformative for the divertor physics performance requirements of tokamak reactors.
- They can ensure target survival for less-strong detachment/edge radiation, reducing risk of degrading fusion performance.