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The rapid evolution of several 
advanced technologies
being strongly pursued for major non-fusion 
applications, is 
potentially transformative 
for the 
divertor physics
performance requirements of tokamak reactors:



1. Advanced Manufacture
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3D printing etc. will increase power handling of
solid divertor targets by increasing the contact
area between coolant and solid surfaces, and
by increasing turbulent heat transfer rates.



2. Advanced Robotics
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• For non-demountable (not openable) toroidal field coils, 
e.g. ITER, internal components must be modular. 

• Problem: larger gaps and misalignments than for a pre-
fabricated, vertical-lift monolithic structure.

• ∴ to shadow-protect edges, power-handling surfaces
have to be tilted. 𝛉⊥~ 4.5o in ITER, c.f. ~ 1o in, e.g. DIII-D.

• Problem: greatly increased power load on surfaces.

• Advances in robotics could enable reduction of gaps & 
misalignments of modular structures. q||

𝛉⊥



3. High temperature superconductor, HTSC magnets
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• HTSC magnets: potentially demountable, openable.

• Enables monolithic rather than modular structure.

• The entire, highly-aligned and robust monolithic
internal structure, including the divertor, is                 
pre-assembled and lowered in and out of place 
(vertical-lift), making possible safe use of small 𝛉⊥
i.e. edges not exposed.

• ARC with HTSC magnets and vertical-lift: 𝛉⊥~ 1o.



Advanced technologies → divertor physics
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• These high tech areas are being pursued for major, rapidly 

growing non-fusion applications.

• Robotics industry doubles every ~3 years. World-wide 

expenditures: $B116 (2019) → $B210 (2022, proj.)

• Reactor design should assume these advances will be exploited.

• ITER design is now largely fixed, but advances in robotics and 

additive manufacture will undoubtedly be exploited to upgrade 

the ITER divertor, which is planned to be replaced.  



Advanced technologies → divertor physics
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• Advanced technologies are potentially transformative 

for divertor physics requirements re the paramount 

requirement of target survival  :

I.   Required plasma temperature, density at target,

II. Required volumetric power dissipation in the edge,

IIII. Value of ‘upstream’ SOL plasma density (→ ഥ𝐧𝐞).



I. nt (Tt): divertor plasma ntarget (Ttarget) for target 

survival re both power-load & erosion
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With smaller 𝛉⊥ and/or 
higher power handling  
limits, it isn’t necessary to 
go as deeply into 
detachment, i.e. to such low 
Ttarget → requires less edge 
radiation, reducing risk of 
degrading confinement.

𝐧𝐭 ≈ 𝐪𝐩𝐰𝐫−𝐥𝐢𝐦𝐢𝐭/ 𝟕. 𝟓𝐞 𝟐𝐞/𝐦𝐢 𝟏 + 𝟐/𝐓𝐭 𝐓𝐭
𝟏.𝟓𝐬𝐢𝐧𝛉⊥

All expressions in poster are derived 
in Stangeby PPCF 60 (2018) 044022.                                                                                           



I. nt (Tt): divertor plasma ntarget (Ttarget) for target 

survival re both power-load & erosion
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Effective physical sputtering yield

In blue 
region: Tt is 
below 
sputtering 
thresholds.

In green region: Tt is above sputtering thresholds; however, for 
high nt, net erosion is suppressed by prompt redeposition.



I. nt (Tt): divertor plasma ntarget (Ttarget) for target 
survival re both power-load & erosion
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II. Required volumetric power dissipation 
in the edge
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With smaller 𝛉⊥ and/or 
higher power handling 
capability, less edge 
radiation is required, 
reducing risk of 
degrading 
confinement.



II. Required volumetric power dissipation 
in the edge
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With smaller 
𝛉⊥ and/or 
higher power 
handling 
capability, less 
edge radiation 
is required, 
reducing risk of 
degrading 
confinement.



III. Value of ‘upstream’ SOL plasma density 𝐧𝐞𝐮 (→ ഥ𝐧𝐞)
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• Traditionally target quantities 
(nt, Tt) are considered to 
depend on the specified 
upstream ones (neu, q||u). 

• However, if target survival is 
made paramount then (nt, Tt) 
get specified and therefore         
neu becomes a function of  
(Tet, 𝛉⊥, power-limit).

𝐧𝐞𝐮 ≈ 𝐪𝐩𝐰𝐫−𝐥𝐢𝐦𝐢𝐭 / 𝟕. 𝟓 × 𝟕𝟓𝟎𝐞 𝟐𝐞/𝐦𝐢 𝟏 − 𝐟𝐦𝐨𝐦−𝐥𝐨𝐬𝐬 𝐓𝐞𝐭 𝟏 + 𝟐/𝐓𝐞𝐭 𝐓𝐞𝐭
𝟏/𝟐

𝐬𝐢𝐧𝛉⊥



III. Value of ‘upstream’ SOL plasma density 𝐧𝐞𝐮 (→ ҧ𝐧𝐞)
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•However, for the main plasma, 
ITER needs neu~0.6E20 m-3; ARC 
~1E20 m-3; FNSF-AT ~0.9E20 m-3.

• If 𝛉⊥= 4.5o, then Tet ~1 eV,∴ deep 
detachment, strong edge rad’n.

• If 𝛉⊥= 1o, then Tet = several eV, ∴
less deep detachment,
less strong edge radiation, 
less risk to confinement.



Conclusion
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• The rapid evolution of several advanced 
technologies being strongly pursued for major non-
fusion applications, is potentially transformative for 
the divertor physics performance requirements of 
tokamak reactors.

• They can ensure target survival for less-strong 
detachment/edge radiation, reducing risk of 
degrading fusion performance.


