Cause and Impact of Low-Frequency Chirping Modes in DIII-D Hybrid Discharges

By **D. Liu^{1,}**, W.W. Heidbrink¹, M. Podesta², Z.Z. Ren³, G.Y. Fu⁴ C.C. Petty⁵, F. Turco⁶ and M. A. Van Zeeland⁵

¹University of California, Irvine
²Princeton Plasma Physics Laboratory
³Dalian University of Technology
⁴Zhejiang University
⁵General Atomic
⁶Columbia University

UCI University of California, Irvine

16th Technical Meeting on Energetic Particles in Magnetic Confinement Systems – Theory of Plasma Instabilities

Shizuoka City, Japan September 3-6, 2019

Significant Variations of Fast-ion Instabilities Observed in Hybrid Discharges with Electron Cyclotron (EC) Waves

- Hybrid: long duration, high performance & steady H-mode; viable scenario for ITER operation
- Steady tearing mode (TM) often present; modest reduction in particle and energy confinement
- low magnetic shear in the core with q₀ close to unity

Significant Variations of Fast-ion Instabilities Observed in Hybrid Discharges with Electron Cyclotron (EC) Waves

- Hybrid: long duration, high performance & steady H-mode; viable scenario for ITER operation
- Steady tearing mode (TM) often present; modest reduction in particle and energy confinement
- low magnetic shear in the core with q₀ close to unity
- With NBI only, Alfvén eigenmodes (AE) are often observed at frequencies of 100-250 kHz.
- AEs could be TAE/EAE/BAE
- D_f of 1.0-2.0m²/s needed to match classical neutron rate

Significant Variations of Fast-ion Instabilities Observed in Hybrid Discharges with Electron Cyclotron (EC) Waves

- Hybrid: long duration, high performance & steady H-mode; viable scenario for ITER operation
- Steady tearing mode (TM) often present; modest reduction in particle and energy confinement
- low magnetic shear in the core with q₀ close to unity
- With NBI only, Alfvén eigenmodes (AE) are often observed at frequencies of 100-250 kHz.
- AEs could be TAE/EAE/BAE
- D_f of 1.0-2.0m²/s needed to match classical neutron rate
- With NBI and EC, AE activity often became weaker/suppressed; lowf bursting modes appear.
- D_f of 0.5-1.0m²/s needed to match classical neutron rate

Outline

- Experimental observations and database study
- With NBI + EC, AE \rightarrow low-f bursting modes
- low-f bursting modes are usually chirping TM; occasionally fishbones
- Hypotheses and modelling for the instability transition
- Large (trapped) fast-ion population responsible for the transition
- Impact and plausible reasons for low-f bursting modes
- Fast ion losses observed only when n=1 mode is large
- TM & fishbones interplay through fast-ion channeling in phase space
- Summary and future work
- Goal: understand fast-ion instabilities in hybrids & their interaction with TM to improve the plasma performance

Low-Frequency Bursting Mode can be Chirping Tearing Mode (TM) or Fishbones

- NBI starts at 1500ms, EC starts at t=1700ms, steady TM at 1725ms
- Fishbones appear at t=1750ms, co-exist with steady TM
- t>2025ms, TM frequency abruptly jumps up and then chirps down within 1ms
- Note: n=1 mode can be very weak, sometimes only visible in magnetics

Low-Frequency Bursting Mode can be Chirping TM or Fishbones (Cont'd)

Early time

Later time

- TM and fishbones co-exist at the beginning, and then TM is suppressed (at t=1960ms). Harmonics of n=1 start to appear.
- Relatively rare in the database (3 shots only)

Chirping TM has been Observed on Other Facilities but not well Understood

 TFTR: NTM frequency jumps up and chirps down

 Chirping TM was also observed in HL-2A (Chen NF 2019), EAST(Li PPCF 2016)

A Database is Built to Study the Cause of Variation of Instabilities in Hybrid Plasmas

Summary of observations

- **AEs**: in NBI-only or early phase of NBI+EC discharges
- Low-f bursting modes: 200-300 ms after EC; rare in low torque hybrids with counter-NBI or high-density hybrids.

The database include

- 4-5 time slices per shot, totally 40 hybrid shots
- Flags for steady TM, chirping TM, fishbone, AE, ELM
- P_{NBI} , P_{EC} , q profile from efit02 with E_r correction
- Plasma/fast-ion pressure and beta, fast ion density ... are extracted from TRANSP runs that assume classical fast ion behavior

The Database Suggests that Occurrence of Low-Frequency Bursting Mode is Mainly due to Large Fast Ion Population

- AE: $P_{fi}(0)/P_{tot}(0) \sim 0.3-0.5$ and $v_{inj}/v_{alfven} > 0.6$
- Low-frequency bursting modes: $P_{fi}(0)/P_{tot}(0) > 0.5$ and $v_{inj}/v_{alfven} < 0.6$. Pure fishbones (w/o chirping NTM) seem in the transition region.

The Database Suggests that Occurrence of Low-Frequency Bursting Mode is Mainly due to Large Fast Ion Population

- AE: $P_{fi}(0)/P_{tot}(0) \sim 0.3-0.5$ and $v_{inj}/v_{alfven} > 0.6$
- Low-frequency bursting modes: $P_{fi}(0)/P_{tot}(0) > 0.5$ and $v_{inj}/v_{alfven} < 0.6$. Pure fishbones (w/o chirping NTM) seem in the transition region.
- Not well separated by q₀

Plasma during ECCD/ECH Always Evolves toward Higher Electron Temperature and Lower Density

Higher temperature and lower density during EC phase result in an increase of fast-ion slowing-down time

 \rightarrow large (trapped) fast-ion population

 \rightarrow large drive for fishbones

Our Hypotheses for the Transition from AE to Fishbones

- The increase of T_e & decrease in n_e during EC result in a rise of (trapped) fast-ion density, which makes fishbones most unstable.
- The gradual decrease of q₀ also facilitates the excitation of fishbones.

- Although the increase of fast-ion density also increases the drive of AEs, the increase of total plasma pressure and T_e can also increase the damping depending on the AE mode type.
- If unstable first, fast-ion transport induced by the fishbones may relax the gradients that would drive AEs.

Previous Kinetic/MHD Hybrid Simulations Shows the Transition of AEs to Fishbones could be due to q_0 Drop.

ion pitch angle.

Simulations Show that Either AE or Fishbones can be Destabilized Depending on Passing/Trapped Particle Fraction

$\Lambda_0=0.6$ (more trapped ptcls)

Small variation (more trapped particles) of pitch angle in the fastion distribution can cause the transition from AE to fishbones.

(Note: tearing mode is not included in the simulations.)

Outline

- Experimental observations and database study
- With NBI + EC, AE \rightarrow low-f bursting modes
- low-f bursting modes are usually chirping TM; occasionally fishbones
- Hypotheses and modelling for the instability transition
- Large (trapped) fast-ion population responsible for the transition

Impact and plausible reasons for low-f bursting modes

- Fast ion losses observed only when n=1 mode is large
- TM & fishbones interplay through fast-ion channeling in phase space
- Summary and future work
- Goal: understand fast-ion instabilities in hybrids & their interaction with TM to improve the plasma performance

Low-Frequency Busting Mode Sometimes Cause Fast Ion Losses

161410: chirping NTM with n=2

- For all fishbone cases, fast ion losses are observed in the signals of PMT of FILD system and foil collector. Neutron rate drops 2-3%.
- For chirping TM cases, fast ion losses are only observed when the n=1 mode amplitude is large (1/4 of all chirping cases)
- In most chirping NTM cases with relatively weak n=1 mode, no obvious drops in neutron emission; no spikes in fast ion loss and D_a measurements.

TM is Confirmed by its Phase Variation and Mode Frequency; n=1 Mode has Constant Phase

"Kick" Model^{*} Simulations Suggest that n=2 TM and n=1 Fishbone can Interplay through Fast-ion Channeling in Phase-Space

Plausible Reasons for the NTM Island Width Modulation and Frequency Chirping

- Theory I: resonance with precessing trapped particles -> change fast-ion deposition rate in the resonance region -> generate a toroidal torque to accelerate island
- The resonant torque modulates the NTM frequency and amplitude through the **polarization current term**

Plausible Reasons for the NTM Island Width Modulation and Frequency Chirping

- Theory I: resonance with precessing trapped particles -> change fast-ion deposition rate in the resonance region -> generate a toroidal torque to accelerate island
- The resonant torque modulates the NTM frequency and amplitude through the **polarization current term**
- Theory II: extra fast ion contribution term in the modified Rutherford equation

$$\frac{8\pi}{\eta c^2} I_1 \frac{dw}{dt} = \Delta_b + \Delta_b + \Delta_i + \Delta_i' + \Delta_u',$$
$$\Delta_u' = -G_3 \left(\frac{r}{sL_n}\right)^2 \frac{\beta_\theta}{w} \frac{\omega'}{\omega_{*i}} \frac{n_h}{n_i} \frac{L_n}{L_h}$$

- This effect depends on TM propagation freq, magnetic share and fast-ion density gradient.
- The effect is more significant with weak magnetic shear & high fast-ion density. It may suppress NTM under certain conditions. 25

Summary and Future Work

Observations and database study

- With NBI+EC, AE activity is suppressed & replaced by low-f chirping mode
- The database suggests: (i) low-f chirping modes occur when P_{fi}(0)/P_{tot}(0)>0.5 (ii) The q profile change plays a weaker role.
- Low-f chirping mode is often chirping NTM and occasionally fishbones.
- Chirping NTMs do not always cause significant fast ion losses. Only when n=1 amplitude is large, small neutron drop(2-3%) & fast ion losses are observed.

Modelling

- Simulations suggest that increase of trapped fast ions can cause the transition from AE to low-frequency mode.
- Resonance conditions and "kick" model simulations show that TM and fishbone can interplay through fast-ion channeling in phase space.
- Island width & frequency modulation may be explained by (1) resonance of TM with trapped particles, (2)cross-field current by resonant fast ions
- Future work: (1)self-consistent simulations include fast ions, NTM and fishbones. (2)measurements of response fast ions in phase space (passing vs trapped); island rotation direction and frequency evolution;...

