Extensions of FIDASIM capabilities: Passive signals, 3D geometry and neutron collimator signals

·II)ASI

Alvin V. Garcia¹

Luke Stagner² William W. Heidbrink¹ Yutaka Fujiwara³

¹University of California, Irvine, USA

²Oak Ridge Associated Universities, USA ³National Institute for Fusion Science, Japan

This work was supported by the U.S. Department of Energy under DE-FG02-06ER54867 and DE-SC0019253.

Outline

- I. Motivation and introduction to FIDASIM
- II. (a) Cold neutral and passive signal capabilities
- II. (b) NSTX-U passive FIDA modelling benchmark and TCV passive NPA signals
- III. 3D geometry capabilities and validation with FIDA measurements on LHD
- IV. (a) Weight functions produced by FIDASIM and their relevance for Orbit Tomography
- IV. (b) Neutron collimator weight functions and benchmark with uniform inputs

Motivation for FIDASIM upgrades

- FIDASIM is internationally used to model FIDA and NPA signals
- Experiments have shown that signals from cold neutrals can be as important as signals from injected neutrals^{1–6}
- 3D capability is needed to study fast ion confinement in stellarators and in tokamaks with ELM-control coils
- Modelling FIDA, NPA and neutron collimator signals in a common framework is favorable for orbit tomography
- Purpose of this work: Upgrade FIDASIM to treat cold neutral effects, 3D configurations and neutron collimator signals

¹Hao, PPCF 60 (2018) 025026 ²Heidbrink, PPCF 63 (2011) 085007 ³Geiger, PPCF 59 (2017) **115002** ⁴Heidbrink, PPCF 53 (2011) 085028 ⁵Bolte, NF 56 (2016) 112023 ⁶Michael C A, PPCF 55 (2013) 095007

Fast-ion D_{α} (FIDA) and Neutral Particle Analyzer (NPA) diagnostics measure the fast-ion distribution

https://d3denergetic.github.io/FIDASIM/

FIDASIM is a synthetic diagnostic code that simulates FIDA and NPA signals

Theoretical Fast-ion Distribution

- FIDA and NPA measure the fast-ion distribution function
- Forward modelling predicts FIDA & NPA signals to compare with measurements¹

Experimental

Measurements

- Charge exchange is modelled, and the FIDA radiance & NPA flux are calculated
- More required inputs:
 - Plasma profiles
 - Electromagnetic fields
 - Diagnostic geometry

¹Heidbrink, CCP 717 (2011)

UCI Part II (a)

FIDASIM can model the signal produced from multiple light sources

Beam emission (Full, Half, Third)

Bremsstrahlung

DCX and Halo

Cold neutral emission

Active Fast-ion D_{α} (FIDA)

Passive Fast-ion D_{α} (p-FIDA)

Passive signals improve understanding on the fast-ion distribution and neutral density profile

UCI

Part II (a)

Active vs. passive signal distinction		
Signal Type	Signal Type Charge exchange source	
Active	Injected neutrals	
Passive	Cold neutrals	

- Passive signals must be treated to get valid active FIDA data
- Simulating passive signals provides quantitative information on fast-ion losses that may be a challenge for ITER¹
- P-FIDA signals are enhanced when fast ions are expelled to the edge by instabilities²
- Neutral density profile may be found from a known fast-ion source with passive measurements¹

¹Bolte, NF 56 (2016) 112023 ²Hao, PPCF 60 (2018) 025026

UCI Part II (a)

FIDASIM reads in cold neutral density, calculates their atomic states and predicts passive signals

 FIDASIM accepts 2D and 3D cold neutral density input
 TRANSP variable dn0wd

- Atomic state calculations
 - Assume ground state, $f_1 = 1$, for all cold neutrals
 - Use the local plasma parameters to iteratively solve the collisional radiative model (COLRAD)
 - Once equilibrium is achieved, distribute neutrals throughout the interpolation grid
- Perform passive calculations in a cylindrical grid

Time evolution of neutral population fluxes for initial condition $f_1 = 1$ (solid) and $f_3 = 1$ (dashed). The fluxes are normalized to unity at each time step¹. Equilibrium is achieved quickly in both cases

¹Stagner, (Thesis) UCI (2018)

Passive-FIDA signals are comparable in magnitude to active-FIDA signals at NSTX-U

 Shapes of measured spectra are in agreement with simulated spectra

UCI

Part II (b)

¹Hao, PPCF 60 (2018) 025026 ²Geiger, PPCF 59 (2017) 115002

²D passive-FIDA modeling done on NSTX¹. Thin and thick line is experiment and simulation, respectively

FIDASIM p-FIDA capability is benchmarked with 2D passive-FIDA modeling done on NSTX

 Plasma, fields, geometry and fast-ion distribution function from the NSTX passive modelling study are reused in this benchmark

UCI

Part II (b)

- P-FIDA spectra are wavelength integrated between 650.8–654.0 nm
- Good agreement between time series data

UCI Part II (b)

In TCV, passive signals can exceed active signals

- TCV is a fairly small tokamak with relatively large orbits and deep neutral penetration
- The calculated passive flux exceeds the active flux for the tangentially viewing compact NPA

 Passive FIDA signals are also large²

Calculated NPA flux at the compact NPA¹ during beam injection in TCV

¹Karpushov, RSI 77 (2006) 033504 ²Geiger, PPCF 59 (2017) 115002

Interpolation grid is extended to 3D by accepting toroidal variable ϕ

Inputs	Interpolation Grid Variables
2D	
$n_{\phi} = 1$	R, Z
$\phi = 0$	
3D	
$n_{\phi} > 1$	R, Z and ϕ
$\phi \in [-\pi,\pi)$ or	
$\phi \in [0, 2\pi)$	

- Unless the user provides ϕ variable information, FIDASIM will default to an axisymmetric configuration
- In both cases, the code maps the fields, plasma parameters and fast-ion distribution function onto the interpolation grid

Diagnostic grids are incorporated into FIDASIM

Signal	Diagnostic Grid Name	Coordinate System
Active FIDA, BES, DCX, Halo, Cold	Beam	Cartesian
Active NPA	Beam	Cartesian
Passive FIDA	Passive neutral	Cylindrical
Passive NPA	Passive neutral	Cylindrical
Neutron Collimator	Neutron	Cylindrical

- Generating diagnostic grids from user defined inputs optimizes the calculations performed by FIDASIM
- Cylindrical diagnostic grids are created as follows
 - If the interpolation grid is 3D, then the diagnostic grid is the interpolation grid
 - Otherwise, the code will generate a cylindrical grid specific to the geometry of the diagnostic and its intersection with the plasma boundary
- Diagnostic grid settings are written to the output file for the user

UCI Part III

FIDA signals predicted by FIDASIM from 3D inputs agree with FIDA measurements on LHD

1E19

Experimental Parameters ¹		
lon species	Deuterium	
T _e	~1 keV	
n _e	~10 ¹⁹ m ⁻³	
P _{NB1}	0.8 MW	
Β _τ	2.75 T (counter)	
R _{ax}	360 cm	
Bq	100 %	
Gamma	1.354	

Simulation DCX FULL HALF 1E18 1E18 THIRD Radiance [ph/cm²/s/nm] Intensity x 8E13 [a.u.] HALO FIDA TOTAL 1E17 Measurement 1E17 1E16 1E16 1E15 1E15 1E14 1E14 660 650 670

1E19

Wavelength [nm]

FIDA simulations predicted by FIDASIM agree with tangential FIDA measurements during NB1 injection in LHD¹

¹Fujiwara, P1 63, IAEA (2019)

 Predicted FIDA spectra from scaled inputs are compared with spectra from unmodified inputs

$$\left(\frac{FIDA_{scaled} - FIDA_{baseline}}{FIDA_{baseline}} \times 100\%\right)_{LOS}$$

FIDASIM response in FIDA signal to uniform scaling of inputs			
parameter	Percent difference for $parameter \times (-15\%)$	Percent difference for <i>parameter</i> ×(+15%)	
n _e	+1.81%	-2.44%	
T _e	-0.81%	+1.17%	
T _i	+5.73%	-2.96%	
Z _{eff}	+2.87%	-4.60%	

Weight functions describe a diagnostic's

sensitivity to phase space

- Signal $\equiv S = \int d\mathbf{X} W(\mathbf{X}) F(\mathbf{X})$
 - X is phase space
 - W is the weight function
 - F is the distribution function
- For example, the expected diagnostic signal in velocity space is¹
 - $S = \iint dp dE W(E, p)F(E, p)$
- W can be computed with a forward model
 - FIDASIM calculates FIDA and NPA velocity space weight functions
 - Assuming F is a delta function, W is the average signal produced by a fast ion with a given energy and pitch²

Representative FIDA velocity space weight function for FIDA diagnostic at DIII-D. FIDA weight functions depend on wavelength²

> ¹Heidbrink, PPCF 49(9):1457, 2007 ²Stagner, (Thesis) UCI (2018)

$$W(E,p) = \frac{1}{2\pi} \int d\gamma dR dZ d\phi \, S(E,p,\gamma,R,Z,\phi) \delta(\gamma-\gamma_0) \delta(R-R_0) \delta(Z-Z_0) \delta(\phi-\phi_0)$$

Using FIDASIM to calculate weight functions is favorable for Orbit Tomography

- Action-angle formalism is used to derive orbit weights¹
 - W is the average signal produced by a fast ion orbit

$$W(E, p_m, R_m) = \frac{1}{4\pi^2 \tau_p} \iiint dt d\gamma d\phi \, S(E, p_m, R_m, X)$$

UCI

Part IV (a)

- Calculating *W* for a diagnostic requires loading orbit trajectories into its forward model (FIDASIM)
- Orbit Tomography uses orbit weight functions to infer the full distribution function from experimental data²

- FIDASIM calculates FIDA, NPA and neutron orbit weights
- Forward modelling and producing weights with FIDASIM eliminates errors made from mistakes in preparing inputs for multiple codes

¹Stagner, PoP 24 (2017)

Orbit trajectories created from a DIII-D plasma at constant energy and R_m plotted in orbit space² ²Stagner, (Thesis) UCI (2018)

Neutron collimator forward models for beamtarget fusion reactions are added to FIDASIM

• For beam-target neutrons, the global production rate is

 $S = \iiint d\mathbf{r} dp dE \ n_d \ \langle \sigma v \rangle_{\gamma} F$

 Neutron collimator forward model uses NPA probabilistic framework to calculate the geometric factor for an isotopically emitting source¹

$$f_{g,i} = \frac{1}{4\pi} \iint dx dy \frac{z_i}{\left((x - x_i)^2 + (y - y_i)^2 + z_i^2\right)^{3/2}}$$

• Thus, the collimated neutron flux is

UCI

Part IV (b)

$$S_c = S f_g$$

¹Stagner, RSI 85.11 (2014) 11D803

Neutron collimator forward model is benchmarked with uniform inputs

- Similar to NPA definitions, the NC diagnostic is defined by an aperture, detector and collimator length
- Uniform and circular emissivity profile is created
- If $D \to \infty$, solid angle

• Expected signals

$$N = \epsilon V_{torus}$$

$$= \epsilon \frac{(\pi L)^2}{2R}$$

$$N_c = \epsilon V_{column} \Omega$$

$$= \epsilon \frac{A_d^2 L}{4\pi (D+d)^2}$$

Input Parameters		
<i>L</i> 119.7 cm		
D	10 ³ cm	
d	10 ⁵ cm	
r	1 cm	
R	170 cm	

Conclusion

- Cold neutral and passive signal capabilities are added to FIDASIM
- P-FIDA signals predicted by FIDASIM are successfully benchmarked with passive modelling done on NSTX-U
- FIDASIM can accept fusion configurations with 3D geometry and are successfully benchmarked with FIDA data on LHD
- Weight functions for FIDA, NPA and neutron diagnostics can be calculated by the code
- Forward model for the neutron flux signal is added to FIDASIM and benchmarked with uniform inputs

Future work

- Optimize neutron collimator signals and benchmark with TRANSP
- Incorporate 3 MeV proton weight functions into FIDASIM
- Apply Orbit Tomography to more cases on several fusion devices with multiple diagnostics
- Support FIDASIM user base

Our group is interested in expanding the network of FIDASIM users

- A benchmark between the USA and EU versions of FIDASIM are underway
- New 3D capability is inviting for stellarator scientists to use our code
- Clone the FIDASIM repository https://github.com/D3DEnergetic/FIDASIM
- Find our documentation online https://d3denergetic.github.io/FIDASIM/
- Have a question about the code?
 Easily open an issue on GitHub