16th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, September 3 – 6, 2019, Shizuoka, Japan

Runaway electron driven high frequency kinetic instabilities during quiescent phase of KSTAR discharges

September 4, 2019

Jayhyun Kim (jayhyunkim@nfri.re.kr)¹, M.H. Kim^{1,2}, G.S. Yun², J.M. Jo³, D.C. Seo¹, S.J. Wang¹, H. Wi¹, B.H. Park¹, and the KSTAR team

¹National Fusion Research Institute, Daejeon, Republic of Korea ²Pohang University of Science and Technology, Daejeon, Republic of Korea ³Seoul National University, Seoul, Republic of Korea

Motivation of this work

- ITER decided to install multiple shattered pellet injectors for high density during disruption.¹
- The requirement mainly comes from the suppression condition of runaway electrons (REs).
- However, the level of requirement is still challenging when considering the disruption situation.
 - Abrupt cooling of plasma due to massive material injection

¹M. Lehnen et al., IAEA fusion energy conference (2018).

Can we utilize instabilities (self-driven or externally driven) in mitigating the disruption?

• Like ELM mitigation/suppression by resonant magnetic perturbation¹

KSTAR

Previous measurement of runaway electron (RE) driven kinetic instabilities (KIs) in DIII-D

- Due to the limitation of measurements, DIII-D measured relatively low frequency KIs.¹
- It corresponds to anomalous Doppler resonance of REs (~10² MHz order).
- It is expected that

higher frequency KIs (~GHz order) also exist and provide the bulk dissipation of REs.^{2,3}

Mode characteristics of ~10² MHz order KIs and higher ones

- Measured low frequency KIs (~10² MHz order) have harmonic band structures.
- It can be explained either by¹
 - Eigenmodes related to bounded and periodic nature of tokamak
 - Wave cut-off
 - Damping effect
 - Scattering off of other plasma waves.
- It is expected that ~GHz order KIs are evanescent².
- So it is hard to measure ~GHz order KIs in fusion plasma with ex-plasma diagnostics.
- How can we detect/measure them?

¹D.A. Spong et al., Phys. Rev. Letters (2018). ²P.B. Aleynikov et al., Nucl. Fusion (2015).

If KIs affect on RE pitch, it should be carried on electron cyclotron emission.

¹ J. Leem et al., JNIST (2012).

- ² S.G. Thatipamula et al., PPCF (2016).
- ³ M.H. Kim et al., Nucl. Fusion (2018).

⁴ Y.B. Nam et al., Rev. Sci. Inst. (2018).

Courtesy of G. Yun et al.

Pure Ohmic discharge with relatively low density and high loop voltage continuously drives REs.

Analysis of synchrotron radiation pattern (progressing)

- Synchrotron radiation in visible camera supports the existence of high energy REs (>10 MeV).
- RE energy range and pitch could be deduced from IR image.
 - Analysis is progressing with IR image.

High resolution RF diagnostic system in KSTAR opened *new zoology* of RE driven kinetic instabilities.

Strong RE energy conversion from parallel to perpendicular energies were observed in timings of certain specific kinetic instabilities.

- Unlike sawteeth, T_e is abruptly raised in both sides of inversion radius.
- Mirnov coils only respond significantly at the timing of RE energy conversion.

The specific kinetic instability consists of two parts: strong short burst and following wide spectrum

Only short burst (~10 µs) instability caused significant RE energy conversion.

- Spiral antenna (direct EM field measurement of wave) also significantly responds to the burst.
 - ECE and spiral signals do not necessarily respond together.

RF signal measured by external spiral antenna exhibited harmonic band structure.

- The band gaps correspond to deuterium ion cyclotron frequency ($\Delta f \sim 10 \text{ MHz}$).
- 100~400 MHz bands show strong activity.

This resembles the signature during ELM crashes in H-modes although the causes of burst are *totally* different each other.

Courtesy of M.H. Kim et al.

¹ S.G. Thatipamula et al., PPCF (2016). ² M.H. Kim et al., Nucl. Fusion (2018).

If so, what causes the short RE burst?

- ELM burst: P-B instability → ELM crash → relaxation process
- RE burst: pre-cursor of instability $(?) \rightarrow$ RE burst \rightarrow relaxation process
- In most cases (not always), the below precursor appears before the RE burst.
 - Why not always? Do we still see the tip of the iceberg?

The short burst is localized in specific radius.

• Specific channels of ECE radiometer exhibit very strong spikes in addition to long sustaining jump-up of Te.

The short burst is localized in specific radius.

• Sometimes, the spikes emerge simultaneously in distant channels.

K§TAR

Near future works

- So far, we have focused on the quiescent phase of discharges.
 - Relatively low electron density (~1x10¹⁹ m⁻³) and high electron temperature (~keV)
 - With moderately high electric field
- More interesting phase is a disruptive phase w/ or w/o massive material injection (SPI or MGI).
 - Very high electron density ($\sim 10^{20} \text{ m}^{-3}$) and low electron temperature ($\sim 10 \text{ eV}$)
 - With very high electric field
- In upcoming campaign, we will try to measure RE driven KIs in disruptive phases.
- Further study in quiescent phase is still needed for revealing the characteristics of observed KIs.
 - Dispersion relation of waves:
 - Simultaneous measurement of k_{parr} and k_{perp}
 - Characteristics of KIs depending on discharge conditions:
 - Dependencies on density, toroidal field, and etc.
 - Role/characteristics of KIs without significant RE energy conversion
 - Role/characteristics of ~10² MHz KIs only measured in spiral antenna
- Measurement of RE energy distribution
 - Analysis of synchrotron radiation pattern: infra-red and visible images
 - Development of hard x-ray diagnostic system (?)

High resolution RF diagnostics at two different toroidal position

Far (?) future works: control of RE by externally driven modes

- In 2018 campaign, we *naively* injected whistler wave with using the prototype of helicon system.
 - Power~10 kW, frequency=475 MHz, n_{//}=3
 - It seems that the coupling to plasma was negligible likely due to multi-factoring.
- There is no meaningful effect on RE driven instabilities.
- However, we should pursue the control of REs by externally driven mode for reliable RE control.¹
- We might need to optimize *integrated* disruption mitigation strategy possibly between
 - massive material injection (for thermal and EM loads) and
 - external mode driving (for REs).
- Collisional plasma during post-disruption phase could be unfavorable for external mode driving.

Back-ups

• Back-ups

External hard x-ray detector¹ cannot catch meaningful signature at the RE energy conversion.

- Development of proper hard x-ray diagnostic system is essential for future study.
 - For example, gamma ray imager² in DIII-D

¹ J.M. Jo et al. ² D.C. Pace et al., Rev. Sci. Inst. (2016).

Universality of RE energy conversion in other KSTAR discharge

KSTAR

High resolution RF diagnostic system in KSTAR opened *new zoology* of RE driven kinetic instabilities.

