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OUTLINE 2

* lon cyclotron-range instabilities in mixed
species plasmas are relevant in fusion and
space physics

- Alfvén eigenmodes (AEs) near ~0.6f.; depend
on hydrogen concentiration, prefer low B;

* lon cycloiron emission (ICE) dependent on
magnetic field, dominant harmonics can
change with hydrogen concentration



INTRODUCTION




Multispecies ICE could be exploited to

diagnose fast ions in burning plasmas
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L-mode multi-species tokamak plasmas

excite instabilities similar to those in space

« Space instabilities have possible
tokamak counterparts
« Electromagnetic ion cyclotron (EMIC)
wave frequency range corresponds 2
to that of CAEs and global AEs -
(GAEs) in tokamaks N

« |CEis the tokamak counterpart to hhmm

Van Allen Probe-A
Ht-band EMIC wave
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* Fast-ion populations can come from
neutral beams (50-81 keV) rather
than geomagnetic storms or plasma
plumes
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« Measurement of global rather than
localized distribution function possible
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SETUP AND PLASMA
CONDITIONS




Distribution function changed through

variation of nevtral beam injection

- Beam configurations altered to
access different distribution
functions

« Long pulses (~100 ms) used to
drive instabilities

+ Cycled through beams on |
every shot e |

« Some beam sources pulsed for
~10 ms for diagnostic purposes

Beam Configurations Used
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Variation of injection energy (50-81 keV)




Plasma conditions chosen to mimic

conditions seen in radiation belts

7
<
=
2,
>
b —
(2}
C
)
(]
— T_e, time = 3420.0
-+ TS T_e, time = 3420.0
1 2 — T_e, time= 3420.0l
. 4 ECE T_e, time = 3420.0
— 4t TS T_e, time = 3420.0
> |
2 08 |
— |
Q |
| 0.4 [
= I
|
0.0

0.25 050 0.75 1.00
rho

Plasma Current [MA]

Injected Power [MW]

1x106p
8x105F
6x105[
4x1055

2x105F

—— 176525 (2.17T) |
—— 176527 (1T) |

* Low density, L-mode plasma served as “cold, dense
background” from space observations

* B; varied from 1-2.1 T to represent different belt regions



Relative species concentrations

monitored during both experiment days
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« Space plasma observations are not limited to one
species

« Different fast ion populations achieved by running beams both
iIn deuterium and hydrogen

. Bocquound species altered through hydrogen pufiing, with
overdll concentration rising throughout each experiment day

« 3He?" puffed for a few shots as well

- Species concentrations affect frequency of ICE, and can
either strengthen or hinder observed GAEs/CAEs*

*Cannof currently distinguish befween the two



CAE and ICE measured with antennas

on outer wall

 Measurements made by
both tile RF loops and
antenna straps on outer
wall’

* Located at midplane,
various toroidal angles
a) ICRF antenna straps

° 200 MHz digiﬁz,qﬁon rate b) Tile loops (more of these to be installed)
with low-pass filters to
avoid aliasing

* Upgrades planned!

* More toroidal loops to
get mode number

» Poloidal loop for basic
polarization information

« Faster digitization rate
fo get higher frequency
whistler waves

[1] Thome et al., Rev. Sci. Instrum., 89, 101102, (2018).



EFFECTS ON GAEs/CAEs




Low field pure deuterium shot shows

modest GAE/CAE and ICE activity

* Baseline deuterium
shot with B;=1.25T

« GAE/CAE (~0.6f_4)
observed on 3/6 beam
geometries

« Strongest signals excited
by high-powered co-
perp injecting beams

 Relatively weak ICE
excited on 3/6 beam
geometries

« Co-perp 2" harmonics
have strongest emission

« Up to 5 harmonic
excited by ctr-tang
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High field pure deuterium shot sees

decline in GAE/CAE activity

Power vs. Time & Frequency for 175958 ICE0Q2
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« GAE/CAE activity from off-
axis co-perp beam only
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GAE/CAE activily increases with thermal *

hydrogen conceniration at 1.25 T

- High voltage co-tang and co-perp
along with ctr-tang beams
consistently show GAE/CAE

activity
- Secondary higher-frequency (~f.p)
signal from high-powered co-perp

« Contrasts with previous results on
MAST!

CAE/GAE Amplitude vs. Frequency for

Different H/(H+D) Concentrations
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[1] H J C Oliver et al 2014 Plasma Phys. Control. Fusion 56 125017



ICE DATABASE AND
ANALYSIS




Large number of shots and beam pulses *°

lends itself to nice database

Time average Split into frequency
overbeam |—=)| regions above &
pulse below fqp

FFT raw
ICE data |=——
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dependence on
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 Future analysis: Froquency 1]
« Detect multiple
harmonics and frack Collect peak info
evolution along with H/(H+D)
« Follow frequency ratio, By, density, and
spreading of signals more




Addition of hydrogen shifts dominant ICE

harmonic excited by high-powered co-beams

Largest amplitude ICE peak, Largest amplitude ICE peak,
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« High-power co-injecting beams start off with 2" deuterium
cyclotron harmonic being the strongest

« Later shots with hydrogen show 4™ deuterium harmonic (or 2nd
hydrogen harmonic) being dominant for a range of hydrogen
concentrations

« These signals have consistently lower amplitudes than those from
purely deuterium plasmas



Signals from co-injecting beams dependent

on both B; and hydrogen concentration

High B;, appreciable hydrogen concentration (mean H/(H+D) ~ 38%)

Lower By almost
eliminates ICE
signals entirely,
lower frequency
signals become
prevalent

Lower hydrogen
concentration
generates more
harmonics with
appreciable
amplitude
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Hydrogen does not change dominant

harmonic for counter-injecting beams

- Addition of hydrogen has no obvious affect on
frequency of dominant harmonic for counter-
injecting beams

- Peaks have smaller shift in frequency from fp
harmonics than ICE from co-injecting beams
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FUTURE WORK




Future Work and Goals

* More accurate diagnosis and analysis of hydrogen
profile

« Comparison/validation of main ion concentrations through
improved CER techniques and TAE frequency calculation

« Adaptation of current TRANSP model to look at hydrogen-
heavy distribution functions

« Use verified distribution functions to analyze wave-particle
conditions to find gradients that drive observed instabilities

* More detailed analysis of database of instability
activity vs. relative hydrogen concentration

* Inclusion of 3He?* puffing shots in analysis and
effects thereof

* Future experiments may include more detailed
mode information due to ICE diagnostic upgrade



Distribution functions obtained need to

be verified through FIDA comparison

L]
TRANSP
\
OVFIT- > 7€ HDASI

 OMFIT' used to fit density, temperature, and other profiles

« TRANSP with NUBEAM module used to calculate distribution
function

. CcTJIcqu’red neutron rate compared against the experimental
rate

» Bulkion species changed in accordance with hydrogen
concentration

* Mixed species capabilities need to be incorporated into
FIDASIM2

* TRANSP calculated distribution functions need to be fed
through FIDASIM, whose output will be compared to
spectra seen in experiment

[1] O. Meneghini; L. Lao, Plasma Fusion Res. 8, 2403009 (2013)

[2] L. Stagner, B. Geiger, and W. Heidbrink, 10.5281/zenodo.1341369
[3] Heidbrink, W., Liu, D., Luo, Y., Ruskov, E., & Geiger, B. Comput. Phys.
Commun., 10(3) (2011).



BACKUP SLIDES




Beam-blipping and CER main-ion fitting *

in SOL used for n, and n, measurements

[~ Np ng <ov>

- Fitting rate of exponential decay o
of neutron rate after beam blip!

* Iy = Npnp{ov)
 Np, {ov) constant, known
« Fit to calculate Iy

Exponential decay_-
as beam ions therrpalize

06—

NEUTRONS (1012/s)

» Relative hydrogen concentration
H/(H+D) found through fitting cold - SN T
emission for CER chord in scrape T
off layer

« Additional work being done to fif
more detailed profiles

- TAE frequency investigated as A
means to infer mass density [ S st i i/

- Acceptable agreement but foo | é]
inaccurate to be reliable " CER chord M32

[1] W.W. Heidbrink et al 2003 Nucl. Fusion 43 883



Possibly three emission bands for

GAEs/CAEs when H*, D*, 3He* present

16 Amplitudvs. Time & Fequency fr 1765 ICEQ7 H+
| (15.92 MHz)
« 3He?* puffed at end of day a2+
when H* and D* present in - A (I‘Dof‘ MHz)
similar concentrations = T . BT
« CAE/GAE-looking signals
appear in bands for high-
power co-perp beam pulse
« H* and 3He?" f ]5+92 "
« Weaker signal between e 7
3He?* and D* f .
+ Usual sub-fop GAEs/CAEs W S
 Future work: = D+
(7.92 MHz)

« Detect multiple lower-
frequency peaks to see
these emission bands

Time [s]

Top: Mixed H* and D* shot
Bottom: H*, D*, and 3He?* all present



