Ion species mix, magnetic field, and distribution function dependence of instabilities in the ion cyclotron range of frequencies

Genevieve H. DeGrandchamp' with W. W. Heidbrink', X. D. Du', K. Thome², L. Bardoczi², M. Van Zeeland², C. S. Collins², S. T. Vincena³, S. Tang³, N. A. Crocker³, S. Sharapov⁴, M. E. Koepke⁵, S. H. Nogami⁵, S. Tripathi³

¹University of California-Irvine ²General Atomics ³University of California-Los Angeles ⁴Culham Centre for Fusion Energy ⁵West Virginia University

Presented at the 16th IAEA Technical Meeting on Energetic Particles in Shizuoka, Japan September 5th, 2019

Contact email: gdegrand@uci.edu

ID: 69

OUTLINE

- Ion cyclotron-range instabilities in mixed species plasmas are relevant in fusion and space physics
- Alfvén eigenmodes (AEs) near ~0.6f_{ci} depend on hydrogen concentration, prefer low B_T
- Ion cyclotron emission (ICE) dependent on magnetic field, dominant harmonics can change with hydrogen concentration

INTRODUCTION

Multispecies ICE could be exploited to diagnose fast ions in burning plasmas

ICE data from TFTR supershot², depicting edge ICE from a mixed DT plasma.

- ICE seen on many different devices, including during DT experiments on JET¹ and TFTR²
 - Categorized as either core or edge ICE, depending on the emission radius
 - Core ICE is seen in L-mode plasmas while edge ICE is observed on H-mode
- Future reactor-relevant devices will contain multiple species
 - ICE diagnostic is passive and has potential to survive and thrive on devices like ITER
- Compressional AEs (CAEs) possibly contribute to ICE in tokamaks^{3,4} and may be sensitive to species mix

[3] Gorelenkov, N. 2016 New Journal of Phys.[4] Gorelenkov, N. 1995 Nucl. Fusion 35 1743

[1] Cottrell G.A. et al 1993 Nucl. Fusion 33 1365[2] Cauffman S., et al. 1995 Nucl. Fusion 35 1597

L-mode multi-species tokamak plasmas excite instabilities similar to those in space

Space instabilities have possible tokamak counterparts

- Electromagnetic ion cyclotron (EMIC) wave frequency range corresponds to that of CAEs and global AEs (GAEs) in tokamaks
- ICE is the tokamak counterpart to equatorial noise
- Fast-ion populations can come from neutral beams (50-81 keV) rather than geomagnetic storms or plasma plumes
 - Can control species mix and distribution
 - Measurement of global rather than localized distribution function possible
- Radiation belts see ions with various values of A/Z: H⁺, He⁺, and O⁺
 - Achieved in hot tokamak by using H+, D+, and 3He^{2+}

[1] Saikin, A. A. et al., J. Geophys. Res. Space Physics 10.1002/2015JA021358 (2015).
[2] Balikihin, M. A. et al., Nature Commun., DOI: 10.1038/ncomms8703 (2014).

SETUP AND PLASMA CONDITIONS

Distribution function changed through variation of neutral beam injection

- Beam configurations altered to access different distribution functions
 - Long pulses (~100 ms) used to drive instabilities
 - Cycled through beams on every shot
- Some beam sources pulsed for ~10 ms for diagnostic purposes

Beam Configurations Used	
Co-injecting	Counter-injecting
Tangential	Perpendicular
On-axis	Off-axis
Deuterium	Hydrogen
Variation of injection energy (50-81 keV)	

7

Plasma conditions chosen to mimic conditions seen in radiation belts

- Low density, L-mode plasma served as "cold, dense background" from space observations
- B_T varied from 1-2.1 T to represent different belt regions

Relative species concentrations monitored during both experiment days

- Space plasma observations are not limited to one species
 - Different fast ion populations achieved by running beams both in deuterium and hydrogen
 - Background species altered through hydrogen puffing, with overall concentration rising throughout each experiment day
 - 3He²⁺ puffed for a few shots as well
- Species concentrations affect frequency of ICE, and can either strengthen or hinder observed GAEs/CAEs*

*Cannot currently distinguish between the two

CAE and ICE measured with antennas on outer wall

- Measurements made by both tile RF loops and antenna straps on outer wall¹
- Located at midplane, various toroidal angles
- 200 MHz digitization rate with low-pass filters to avoid aliasing
- Upgrades planned!
 - More toroidal loops to get mode number
 - Poloidal loop for basic polarization information
 - Faster digitization rate to get higher frequency whistler waves

a) ICRF antenna straps

Tile loops (more of these to be installed) b)

[1] Thome et al., Rev. Sci. Instrum., 89, 101102, (2018).

EFFECTS ON GAEs/CAEs

Low field pure deuterium shot shows modest GAE/CAE and ICE activity

- Baseline deuterium shot with $B_T = 1.25 T$
- GAE/CAE (~0.6f_{cd}) observed on 3/6 beam geometries
 - Strongest signals excited by high-powered coperp injecting beams
- Relatively weak ICE excited on 3/6 beam geometries
 - Co-perp 2nd harmonics have strongest emission
 - Up to 5th harmonic excited by ctr-tang

High field pure deuterium shot sees decline in GAE/CAE activity

- + B_{T} increased to 2.1 T
- GAE/CAE activity from offaxis co-perp beam only
- Co-injecting tang., coperp., and off-axis tang. excite ICE
 - 2nd harmonics strongest
 - Up to 4th harmonic observed
- Counter-perp excites ICE slightly higher than onaxis f_{cD}
 - 3rd harmonic has highest amplitude
 - Reaches higher harmonics than co-injecting beams

GAE/CAE activity increases with thermal ¹⁴ hydrogen concentration at 1.25 T

- High voltage co-tang and co-perp along with ctr-tang beams consistently show GAE/CAE activity
- Secondary higher-frequency (~f_{cD}) signal from high-powered co-perp
- Contrasts with previous results on MAST¹

[1] H J C Oliver et al 2014 Plasma Phys. Control. Fusion 56 125017

ICE DATABASE AND ANALYSIS

Large number of shots and beam pulses ¹⁶ lends itself to nice database

Addition of hydrogen shifts dominant ICE harmonic excited by high-powered co-beams

17

- High-power co-injecting beams start off with 2nd deuterium cyclotron harmonic being the strongest
- Later shots with hydrogen show 4th deuterium harmonic (or 2nd hydrogen harmonic) being dominant for a range of hydrogen concentrations
 - These signals have consistently lower amplitudes than those from purely deuterium plasmas

Signals from co-injecting beams dependent on both B_T and hydrogen concentration

High B_T , appreciable hydrogen concentration (mean H/(H+D) ~ 38%)

Hydrogen does not change dominant harmonic for counter-injecting beams

- Addition of hydrogen has no obvious affect on frequency of dominant harmonic for counterinjecting beams
- Peaks have smaller shift in frequency from $f_{\rm CD}$ harmonics than ICE from co-injecting beams

FUTURE WORK

Future Work and Goals

- More accurate diagnosis and analysis of hydrogen profile
 - Comparison/validation of main ion concentrations through improved CER techniques and TAE frequency calculation
 - Adaptation of current TRANSP model to look at hydrogenheavy distribution functions
 - Use verified distribution functions to analyze wave-particle conditions to find gradients that drive observed instabilities
- More detailed analysis of database of instability activity vs. relative hydrogen concentration
- Inclusion of 3He²⁺ puffing shots in analysis and effects thereof
- Future experiments may include more detailed mode information due to ICE diagnostic upgrade

Distribution functions obtained need to be verified through FIDA comparison

22

- OMFIT¹ used to fit density, temperature, and other profiles
- TRANSP with NUBEAM module used to calculate distribution function
 - Calculated neutron rate compared against the experimental rate
 - Bulk ion species changed in accordance with hydrogen concentration
- Mixed species capabilities need to be incorporated into FIDASIM²³
- TRANSP calculated distribution functions need to be fed through FIDASIM, whose output will be compared to spectra seen in experiment

[1] O. Meneghini; L. Lao, Plasma Fusion Res. 8, 2403009 (2013)
[2] L. Stagner, B. Geiger, and W. Heidbrink, 10.5281/zenodo.1341369
[3] Heidbrink, W., Liu, D., Luo, Y., Ruskov, E., & Geiger, B. Comput. Phys. Commun., 10(3) (2011).

Beam-blipping and CER main-ion fitting in SOL used for n_D and n_H measurements

- Fitting rate of exponential decay of neutron rate after beam blip¹
 - $\dot{I}_N = \dot{N}_D n_D \langle \sigma v \rangle$
 - \dot{N}_D , $\langle \sigma v \rangle$ constant, known
 - + Fit to calculate $\ensuremath{\dot{I}_N}$
- Relative hydrogen concentration H/(H+D) found through fitting cold emission for CER chord in scrape off layer
 - Additional work being done to fit more detailed profiles
- TAE frequency investigated as means to infer mass density
 - Acceptable agreement but too inaccurate to be reliable

24

Possibly three emission bands for GAEs/CAEs when H⁺, D⁺, 3He⁺ present

- 3He²⁺ puffed at end of day when H⁺ and D⁺ present in similar concentrations
- CAE/GAE-looking signals appear in bands for highpower co-perp beam pulse
 - H⁺ and 3He²⁺ f_{ci}
 - Weaker signal between 3He²⁺ and D⁺ f_{ci}
 - Usual sub-f_{cD} GAEs/CAEs

• Future work:

 Detect multiple lowerfrequency peaks to see these emission bands

*Top: Mixed H⁺ and D⁺ shot Bottom: H⁺, D⁺, and 3He*²⁺ *all present*