

V Kiptily et al

Excitation of EAE and TAE modes by ³He-ions of the MeV-energy range in hydrogen-rich JET plasmas

16th IAEA TM on Energetic Particles, Shizuoka City, Japan 3rd – 6th September 2019

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority. This work was part-funded by the RCUK Energy Programme [grant number EP/I501045] and the European Union's Horizon 2020 research and innovation programme

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Acknowledgements

Ye Kazakov¹, M Fitzgerald², S E Sharapov², M Iliasova³, E Khilkevich³, M J Mantsinen^{4,5}, L. Meneses⁶, M F F Nave⁶, M Nocente^{7,8}, A E Shevelev³, Z Stancar⁹, G Szepesi², J Ongena¹, Yu V Yakovenko¹⁰ and JET contributors^{*}

¹ LPP-ERM/KMS, Association EUROFUSION-Belgian State, TEC partner, Brussels, Belgium
² Culham Centre for Fusion Energy, UKAEA, Culham Science Centre, Abingdon, OX14 3DB, UK
³ Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation
⁴ Barcelona Supercomputing Centre, Barcelona, Spain
⁵ ICREA, Pg. Liuis Companys 23, 08010 Barcelona, Spain
⁶ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa
⁷ Dipartimento di Fisica "G. Occhialini", Università di Milano-Bicocca, Milano, Italy
⁸ Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, Milano, Italy
⁹ Slovenian Fusion Association, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana
¹⁰ Kyiv Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03680, Ukraine

*See the author list of E. Joffrin et al. accepted for publication in Nuclear Fusion Special issue 2019, <u>https://doi.org/10.1088/1741-4326/ab2276</u>

Outline

Introduction

- 3-ion ICRF plasma heating: D-(³He)-H scheme
- Fast ion instrumentation
- Observation of the confined MeV-energy ³He-ions
 - Gamma-ray spectra
 - Neutron rate
- TAE and EAE modes vs ³He losses
- MHD analysis
- Summary and conclusions

D-(³He)-H ICRF heating

16th IAEA TM EP, Shizuoka City, Japan, 3rd – 6th September 2019: V Kiptily et al – Excitation of EAE and TAE modes by ³He-ions

- The discharge with 3-ion ICRF heating scheme at very low ³He-concentration (<1%)</p>
- TAE and EAE modes were excited

JET

D-(³He)-H ICRF heating

*

- at very low ³He-concentration (<1%) Losses of extremely energetic ³He-ions
 - Losses of extremely energetic ³He-ions were observed with FILD during the discharge

The discharge with 3-ion ICRF heating scheme

3-ion ICRF heating schemes

Target plasma: two (or more) main ion species with different ω_{ci} (i.e. H and D)

 \rightarrow |*E*₊| wave field strongly enhanced in the vicinity of mode conversion layer(s)

Strong wave damping can occur in this region by ions that fulfill the resonance condition $\omega \approx \omega_{ci} + k_{11}v_{11}$

Resonant ions: small number of ions, which can be either

- main ions with large v_{II}, e.g. NBI ions
- minority ions with $(Z/A)_2 < (Z/A)_3 < (Z/A)_1$ i.e. 1/2 < 2/3 < 1/1

3-ion ICRF schemes: demonstrated as a very efficient technique for fast-ion generation and plasma heating on Alcator C-Mod, AUG and JET

> Y. Kazakov et al., Nature Physics (2017) M. Mantsinen et al., EPS-2019

Fast ion instrumentation

Gamma-rays

- * γ-ray emission is produced due to nuclear reactions between fast ions, fuel and main impurities (i.e. Be) in the plasma
- Nuclear reactions used in JET for confined fast ion studies:

<u>Protons</u>	<u>Deuterons</u>	Tritons	³ He-ions
D(p,γ)³He	⁹ Be(d,pγ) ¹⁰ Be	D(t,γ) ⁵ He	D(³ He v) ⁵ Li
T(p,γ) ⁴ He	⁹ Be(d,nγ) ¹⁰ B	⁹ Be(t,nγ) ¹¹ B	${}^{9}\text{Be}({}^{3}\text{He py}){}^{11}\text{B}$
⁹ Be(p,γ) ¹⁰ B	¹² C(d,pγ) ¹³ C	¹² C(t,γ) ¹⁵ N	${}^{9}\text{Be}({}^{3}\text{He ny}){}^{11}\text{C}$
⁹ Be(p,p'γ) ⁹ Be		¹² C(t,ny) ¹⁴ N	$^{9}Be(^{3}He dy)^{10}B$
⁹ Be(p, $lpha$ γ) ⁶ Li		$^{12}C(t,\alpha\gamma)^{11}B$	$12C(3He py)^{14}N$
¹² C(p,p'γ) ¹² C			С(пе,рү) М

* α -particle diagnosis is based on the ⁹Be(α ,n γ)¹²C reaction

Kiptily et al NF 43 (2002) 999

JET γ – ray spectrometers

Kiptily et al NF **50**['] (2010) 084001 Tardocchi et al PRL **107** (2011) 205002 Nocente et al NF **52** (2012) 063009 Nocente M et al IEEE Trans. Nucl. Sci. **60** (2013)

Fast Ion Loss Detector

gyro-radius from 3 cm to 14 cm pitch-angle from 35⁰ to 85⁰

Baumel S. et al RSI **75** (2004) 3563 Darrow D. et al. Rev. <u>Sci.</u> Instrum. **77** (2006) 10E701

10

JET FILD setup

Kiptily et al Nucl. Fusion 58 (2018) 014003

CCD camera and PMTs

The major radius at the ion bounce reflection and the pitch-angle of the grid are related by $R(\theta)=R_{EUD} \sin^2(\theta)$

A typical footprint of the fusion t and p prompt losses during the NBI plasma heating $D + D \implies t(1 \text{ MeV}) + p(3 \text{ MeV})$ The grid (R_{gyr} , θ) on the scintillator probe calculated using EFIT equilibrium

Footprint of ICRH losses and areas of the scintillator, which are seen by PMTs

Observation of the confined MeV-energy ³He-ions

Neutron rate

- During the both 1st and 2nd monster sawteeth, neutron rate grows dramatically
- The TRANSP calculations show that the experimental rate ~2 4 times higher than expected in the plasma

- To increase the neutron rate so high:
 - Knock-on effect D(D,n)³He reaction with energetic D-ions due to the ³He-ion elastic scattering (Coulomb and nuclear)
 - ⁹Be(³He, n)¹¹C reaction with MeV-energy ³He-ions

Neutron rate spikes

Sharp transient spikes of the neutron rate at the sawtooth crashes can be caused by

- D(D,n)³He fusion reaction with D-ions accelerated by electric field generated in ST crash (a reconnection)
- ⁹Be(³He,n)¹¹C reaction due to massive escape of MeV-energy ³He-ions to the first wall

TAE & EAE modes vs ³He losses

TAE & EAE modes

Fast magnetic probes:

@10.0-10.38s: TAEs and weak EAEs

@10.6-10.8s: strong EAEs

Mode localization from the reflectometer:

TAEs (tornados): *R* < 3.25m

EAEs: *R* = 3.25m => 3.45m

Fast ³He-ion loss footprints

Energetic ³He-ion losses were observed during both TAE and EAE mode periods

Fast ³He-ion loss evolution

Waveforms of losses related to the scintillator areas: a strong correlation with appearance of the TAE and EAE modes in the discharge

Fast ³He-ion loss distributions

Fast ³He-ion loss orbits

³He-ion orbits calculated back-in-time from the footprints on the FILD scintillator plate
TAE modes interact with core-localised ions; EAE modes – with ions on the low-field side

MHD analysis

TAE excitation

The resonance condition $\omega = n\omega_{\phi} - p\omega_{\theta}$ is plotted below

A resonance map for TAE with frequency and toroidal number f = 280 kHz, n = 3, which indicates energies 3 - 4 MeV could excite the mode

EAE excitation

A resonance map for $f = 560 \ kHz$, $n = 3 \ p = [-2, -1, 0]$

The strongest wave particle interaction will occur for p=0, which implies energies of **6 MeV** to excite the n=3 modes with 560kHz

EAE excitation

A resonance map for $f = 560 \ kHz$, $n = 1 \ p = [-2, -1, 0]$

n=1 modes with 560kHz are much more difficult to excite, only *p*=-2 appearing at these energies

Summary and conclusions

- ✤ 3-ion ICRF heating scheme with ³He-minority (< 1%)</p>
 - efficient heating of H-D mixed plasmas with multi-MeV ³He-ions

IET pulse #91304 (3.1T/1.8MA): P_{ICRH} = 4.4MW, no NBI, X[H] ≈ 70-80%

- ► Efficient plasma heating: L-mode with $\tau_{\rm E}/\tau_{\rm E, \ L-mode} \approx 1.4$ ($H_{98} \approx 0.84$)
- Long-period sawteeth (~900ms)
- > γ -ray spectra show ³He + ⁹Be nuclear reactions
- Anomalously high neutron rate
- ▶ FILD observations: presence of ³He-ions with energies 3-6MeV and higher
- Excitation of TAE (tornados) and EAE modes observed
 - TAEs, f = 280kHz: excited by ~2-3MeV ³He-ions
 - EAEs, f = 560kHz: requires more energetic ³He-ions (~6MeV)
 - \circ $\:$ Localization of modes consistent with FILD and reflectometer observations

Highlight for future studies and applications

Plasmas with core electron heating, including a small population of MeV-range ³He ions:

- Mimicking the conditions representative for ITER plasmas
- Contribute to the understanding of the impact of energetic ions on the plasma turbulence, in particular, the impact of alphas in ITER

[J.Garcia et al., PoP 25 (2018) 055902]

Contribute to the understanding of fast-ion interaction with MHD modes

Thank you for your attention