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INTRODUCTION

e Strong effects of ECRH on energetic particle-driven Alfvén
Eigenmodes (AEs) were first noted on DIII-D in 2007

e Exploration of such effects is ITER relevant since ITER will
have ECRH/ ECCD and some ITER scenarios may be prone
to AE instabilities driven by fusion alphas and beams

e ITPA EP TG established a Joint Experiment on control
techniques for AEs in ITER, with ECRH/ ECCD being a major
contributor

e Involved: DIII-D, AUG, LHD, KSTAR, TJ-Il... European Labs
are involved through the EUROfusion MST1 activities
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ECRH SUPPRESSES REVERSED SHEAR ALFVEN EIGENMODES (AEs) on DIII-D
AND ASDEX-UPGRADE (AUG)
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Figure 1. Representative equilibrium reconstruction with ECH

steering trajectories overlaid. Dashed lines indicate equally spaced
contours of normalized toroidal flux from 0.1-1.0. Actual EFIT is
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for discharge 157736, f = 431 ms. ol L S . S s

M.A.Van Zeeland et al., Nucl. Fusion 56 (2016) 112007.
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ECRH FACILITATES TAEs IN PLASMAS WITH MONOTONIC g-PROFILE:
o Off-axis ECRH increases Tsp of fast ions and facilitates TAEs (AUG):
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Figure 7. Zoom showing fine time scales for TAE excitation/
disappearance with ECRH.
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TAE CONTROL WITH ECCD ON AUG
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FROM ECRH TO ECCD ON AUG:

Aim: modify local magnetic shear S to suppress TAE

e TAEs cease to exist if plasma pressure gradient exceeds critical value
determined by the magnetic shear, aspect ratio, and Shafranov shift [1-3]:

ap

a=-R,q’ — > Uy = (e+2A")+5S°

e For TAE at half-radius, p;= 0.5, in our AUG discharge #33145 @ 2s we had
0=0.224, £+2A’=-0.231, $S=1.14, so we had a < a4~ 1.06.

e If we could decrease magnetic shear S at the position of TAE from S=1 down to
$=0.6 by using ECCD, we would suppress TAE by pushing frequency of the
mode into Alfvén continuum

e The effect is not about the balance between TAE drive and TAE kinetic damping.
The effect is about TAE existence within the gap in Alfvén continuum.

e A local increase in plasma pressure due to ECH effect could also be beneficial.
[1] G.Y.Fu, PoP 2 (1995) 1029; [2] H.L.Berk et al., PoP 2 (1995) 3401 ; [3] S.E.Sharapov
et al., Nucl. Fusion 39 (1999) 373.
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OFF-AXIS COUNTER- ECCD AT HIGHEST POWER (6 GYROTRONS) ON AUG:
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e Pair of discharges, I,=700 kA, Bt=2.5 T, ICRH drives TAEs unstable;
e #35112 counter-ECCD at p=0.5; #35113 ECRH at p=0.5;

e Similar electron density and temperature!
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Frequency (kHz)

TAEs IN #35113 ARE SEEN IN SXR (BELOW) AND WEAKLY - IN ECE
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SXR AND ECE SHOW TAE LOCALISATION AT r/a ~ 0.5- 0.7

‘ ‘Pulse No: 3511'3 1.5s
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TRANSP analysis for #33112 (ECCD) and #33113 (Reference ECRH)
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e Similar bootstrap currents;

e Current density affected strongly by counter-ECCD;

e Clear effect on g-profile and magnetic shear!
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COULD THE SUPRESSION OF TAEs IN ECCD PULSE #35112 BE ATTRIBUTED TO
A DIFFERENCE IN FAST ION DRIVE FROM ICRH?

PION Modelling of ICRH ions in ##35112, 35113

ny/n, = 5%

Zx=1.5

D beam source as calculated by TRANSP

Full ICRF antenna toroidal mode number spectrum
On-axis H minority resonance

S.E.Sharapov et al., 16" IAEA EPPI TCM, Shizuoka, Japan, 5th September 2019



Fast ion energy content (kJ)

13

TIME EVOLUTION OF FAST ION ENERGY CONTENTS
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FAST H ION PRESSURE PROFILES IN THE TWO COMPARISON DISCHARGES

Discharge 35112 Discharge 35113
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Conclusion: Modelling with the PION code found no difference in fast ion
populations of these two discharges - the difference in TAE could be only

explained via TAE suppression and/ or TAE damping effects
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SUITE OF MHD CODES USED FOR TAE MODELLING

The equilibria for time slices of interest are reconstructed with TEQ+MSE; with
ECCD effects on the g-profile computed with the TRANSP code;

HELENA code is used for a straight field line coordinate system then;

Alfvén continuum structure is computed for the relevant toroidal mode
numbers, and the frequency range of TAEs is identified;

Spectral MHD codes CASTOR/ MISHKA are used then to compute TAEs.
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PLASMA EQUILIBRIA IN AUG DISCHARGES ##35112, 35113
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STRUCTURE OF ALFVEN CONTINUUM FOR n=3, 4, 5 IN ##35112, 35113

Alfvén continuum
#35112F02 @ 1.4s #35113F01 @ 1.4s
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TAE COMPUTED ARE CONSISTENT WITH TAE OBSERVED

Structure of poloidal harmonics m (left) and TAE frequency computed (right).

Alfvén freq. ~ 526 kHz
#35113F01 @ 1.4s mode freq. ~ 143 + tbd kHz (f/fA ~ 0.2722)
exp freq. ~ 157 + 5 kHz
n=3 rotational freq. ~ 4 kHz?
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TAE COMPUTED ARE CONSISTENT WITH TAE OBSERVED

Structure of poloidal harmonics m (left) and TAE frequency computed (right).

Alfvén freq. ~ 526 kHz

#35113F01 @ 1.4s mode freq. ~ 158 + thd kHz (f/fA ~ 0.301 )
exp freq. ~ 166 + 5 kHz
n =4 rotational freq. ~ 2 kHz?
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NO TAEs ARE FOUND WITH MHD CODES ECCD CASE OF AUG #35112 @ 1.4 s.

This is compatible with the pressure suppression effect:

p S Ao’ € Olerit a
#35112 0.498 0.9272 -0.26 0.149 0.489 =0.42
t=14s
#35113 0.498 1.0960 | -0.2522 0.148 0.8448 =0.42
t=14s

e Magnetic shear S at p =0.5 was smaller in #35112 (ECCD) thus making
the critical pressure gradient significantly lower than in #35113 (ECRH)
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MORE SOPHISTICATED ECCD MIRROR SCAN EXPERIMENT STARTED:

e Two gyrotrons were kept at fixed positions;
e Mirrors for other 2x2 gyrotrons moved ECCD power deposition across TAE:

Pulse No: 35328 t = 1.30, sum, rz
I T T ‘ T T T T [ T T \~v‘;: ‘I
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SIGNIFICANT CHANGES IN TAEs SEEN AS ECCD SWEEPS ACROSS
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SOME TAEs DISAPPEAR, SOME APPEAR. TIMES EXIST WITH “NO TAE".

AUG pulse #35334. TAEs with n=2, 3, 4 change as ECCD sweeps across:
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INTERNAL SXR DIAGNOSTICS:

Pulse No: 35343
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INTERNAL SXR DIAGNOSTICS (cont’d):

AUG pulse #35334
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INTERNAL SXR DIAGNOSTICS (cont’d):
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SUMMARY ON TAE LOCALISATION:

e Low-frequency TAEs seen during 1.4 s — 2.4 s are rather global with the
mode structure extending to p= 0.65;

e Higher-frequency TAEs seen at 3-4 s are core-localised at p= 0.3;

e The core-localised TAEs are well seen by SXR, but not all of them are
seen well by magnetics;

e Clear TAE-suppression phase at 2.5 s is seen by all diagnostics.
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TRANSP MODELLING FOR ECCD WITH MOVING MIRRORS

Preliminary TRANSP runs - EC counter drive current

- #35334 - ECCD effect on q and shear (better EC alignment)
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ECCD CO-CURRENT CASE (AUG #35316):
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MHD MODELLING IS YET TO BE FINISHED

e The rather complex pattern of TAEs with different n’s appearing/

disappearing as ECCD sweeps across, the modelling of TAEs is not finished
yet.

e For unambiguous identification of the main ECCD effects on TAEs, the
TRANSP code with moving ECCD mirrors must also now include Kadomtsev
model for sawteeth (which are observed in these discharges).

S.E.Sharapov et al., 16" IAEA EPPI TCM, Shizuoka, Japan, 5th September 2019



31

FUTURE STUDIES ON AUG:

e Reproduce the mirror scan scenario and identify the mirror position/ time for
the short time window when no TAEs are seen;

e Perform experiment at highest ECCD power with the mirror position identified
above. Investigate the possibility of a steady-state “no TAE” scenario;

e Vary ECCD power to assess the “no TAE” power threshold on AUG;
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THE TCV TEAM HAS JOINED THE STUDY OF
ECRH/ ECCD EFFECTS ON AEs IN 2018

e TCV has an excellent ECRH/ECCD system, but NBI energy of 25 keV is
low to drive AEs effectively via the wave-particle resonance

\4

e Scenario development for beam-driven modes was the highest priority
first.
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* R;;=0.88, ;= 0.25 m
e 1m3
« >2 MW of ECRH

* NBI with 1 MW of neutral power
at
25 keV injection voltage

« Bi=143T
B
V4 = ——
v/ HOTL T

For m, =2 x 10"%/m3;

« Vv,/3 =5000km/s ~28.2 keV
- Reduced Btto 1.3 T

« V,/3=4500 km/s ~23.3 keV
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OFF-AXIS NBI+ECRH ON TCV: BEAM-DRIVENE-GAMs OBSERVED

#60923: off-axis NBI configuration (®)
- off-axis configuration (z,,,,=+12 cm)
« 1.3T, 120 kKA
- off-axis ECRH
. * n,~4 x10'9/m3 T~ 800 eV
) * 96 ms long NBI phases with 25 keV and 22 keV
» Alfven modes at ~ 80 kHz during NBI operation (m=4,n=2)
+ |dentified as E-GAMs/BAEs (not TAES)
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WEAK BEAM-DRIVEN E-GAMs WERE EXCITED FIRST:

TCV pulse #60923, n=2

07 08 09 10 11 12 13 14 15 16

Time (s)

S.E.Sharapov et al., 16™ IAEA EPPI TCM, Shizuoka, Japan, 5" September 2019

CPS19.336-11¢



36

OFF-AXIS NBI+ECRH WERE ALSO DRIVING TAEs!

e By doing NBI power scan and scan in Z, (off-axis position), we
managed to excite TAE on TCV with 25 keV beam and ECRH off-axis!
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TAEs EXCITATION WAS SENSITIVE TO THE OFF-AXIS POSITION Z,:

Overview of MIST1-HLT13-TCV shots

Plasma current
-112 T T

List of useful T(.?V shots, October 02-03, 2018 st | -121kA, CO-1,NBI A
aim TAEs . F i Pi

TCV#62111: Zo:+11.9cm 15t 2nd & 3rd pulses 118l _— e
TCV#62112: rpt. 1t, 209 & 39 pulses < -120 Ll Al oo
TCV#62113: low density 15t TAEs, 15t & 2" EGAMs T, Y ezerrl
TCV#62114: BT ramp-up 15t pulse (low) el o
TCV# s rpt. 1t, 209 & 39 pulses ol oA
TCV# : rpt. 1st, 2nd & 319 pulses | o
TCV#62124: Zo:+3.4cm no TAEs a0 . | L —
TCV#62125: Zo:+7.4cm no TAEs . oe o8 e see t He
TCV# 1 Z0:+14.9cm no TAEs
TCV#62127: Zo:+14.8cm no TAEs . _ Power (-) OH, (-) ECH, () NBH |
TCV#62128: NB high-to-low 1%t pulse 1000} froe- —
TCV# : NB low-to-high no TAEs | }
TCV#62130: NB 2 levels 1%t pulse 8oor ~ el
Reproducible “good” shots: 62111, 62112, & s a0l o eas)

TAEs: NB 1.03MW, ECH-X2 400KW., Zo +12cm, - B . e

BT 1.30..1.35T; <ne,,>: 2.3..2.8 - R ——— o

Zo scan: 62124, 62125, ) & 62127 | :OH,) ECH,|NBI | |-z
NB power scan: 62128, & 62130. { Gl sl sl — 228
TCV#60923: Zo:+12cm, OFF-axis NBI reference, May 2018 VA e =y
TCV#60924: Zo:-0.6cm, ON-axis NBI reference S 14 1.6
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NPA SHOWS BUMP-ON-TAIL IN THE BEAM DISTRIBUTION!
Consistent with ASTRA modelling for the beam off-axis when T« < T
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FUTURE STUDIES ON TCV:

e Effect of plasma shape on TAEs;
e Scan in B for ECRH closer to the magnetic axis/ search for TAEs excited with on-axis NBI;

e Preparing for installation of the second beam with higher energy (= 50 keV);

S.E.Sharapov et al., 16" IAEA EPPI TCM, Shizuoka, Japan, 5th September 2019
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SUMMARY ON AUG

Several effects of ECRH on energetic particle-driven AEs were found
experimentally and identified;

On AUG, the step from ECRH to ECCD has delivered an important message that
TAEs could be controlled by the shear variation and associated pressure
suppression/ TAE damping effects

In AUG experiment with the mirror scan of ECCD across TAEs, significant
changes in TAE spectrum were observed, including the no-TAE window

Analysis of magnetics, SXR, and ECE shows a broad agreement with the
modelling

TRANSP modelling of the mirror-ECCD discharges on AUG was completed and
its results are under investigation

S.E.Sharapov et al., 16" IAEA EPPI TCM, Shizuoka, Japan, 5th September 2019
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SUMMARY ON TCV

e Scenario for EGAM and TAE instabilities driven by off-axis NBl and ECRH was
developed on TCV

e A steady-state bump-on-tail beam distribution has been measured in such
scenario facilitating the mode excitation

e Further experiment with NBI closer to the axis, various beam and ECRH powers
etc. is currently planned

S.E.Sharapov et al., 16" IAEA EPPI TCM, Shizuoka, Japan, 5th September 2019



