Observation of neutron emission anisotropy by neutron activation measurement in beam-injected LHD deuterium plasmas

S. Sugiyama¹, T. Nishitani², H. Matsuura¹, M. Isobe^{2,3}, K. Ogawa^{2,3}, T. Tanaka⁴, S. Yoshihashi⁴, A. Uritani⁴, M. Osakabe^{2,3} ¹Kyushu Univ., ²NIFS, ³SOKENDAI, ⁴Nagoya Univ. s-sugi@nucl.kyushu-u.ac.jp

ABSTRACT

- •Neutron emission anisotropy caused by neutral beam injection was observed by neutron activation measurement in LHD deuterium plasmas and was numerically analyzed.
- •The obtained numerical results are consistent in the dependence of the neutron emission anisotropy on the neutral-beam-injection direction with the observed experimental data.

OUTCOME

Experiments

 $R_{O(L)}$: reaction rate of ¹¹⁵In(n,n')^{115m}In in the foil sent to the 8-O (2.5-L) port

 $R'_{O(L)}$: reaction rate of ¹¹⁵In(n, γ)^{116m}In in the foil sent to the 8-O (2.5-L) port

	· · /				-		-					
	Shot No.	Port	$R_{\rm O}, R_{\rm L} \; [imes 10^6 \; { m s}^{-1}]$	η	$R'_{\rm O},R'_{ m L}~[imes 10^7~{ m s}^{-1}]$	η'	$n = R_{\odot} / R_{\star}$					
	147429	8-O	1.61	5.63 ± 0.15	3.74	1.74 ± 0.05	$\eta = \kappa_0 / \kappa_L$					
		2.5 - L	0.287		2.15		$\eta' = R'_{\rm O} / R'_{\rm I}$					
	147431	8-O	0.263	3.35 ± 0.18	0.836	1.74 ± 0.02						
		2.5 - L	0.0785		0.480							
	147433	8-O	1.15	5.58 ± 0.33	2.75	1.84 ± 0.05						
		2.5 - L	0.206		1.49							
1	η depends on the NB injection direction, whereas η' is independent.											

BACKGROUND

- •Information of confined energetic deuterons can be obtained by the neutron measurement in deuterium plasmas.
- •When the deuteron distribution function is anisotropic, non-Maxwellian distribution, the neutron emission spectrum produced by the $D(d,n)^{3}He^{-1}$ reaction also has an anisotropic distribution.
- •The neutron emission anisotropy may provide further understanding of energetic-particle physics and can be used for validation of simulation of energetic-ion behavior.
- •We have conducted experiments and performed numerical analyses to investigate the dependence of the neutron anisotropy on the neutralbeam-injection direction in LHD deuterium plasmas.

CHALLENGES / METHODS / IMPLEMENTATION

Experimental setup

Three different anisotropic deuteron distribution functions were produced by using: all NBIs (#147429), only two perpendicular NBIs (#147431) and only three tangential NBIs (#147433).

Numerical analyses

Deuteron distribution function

Neutron emission spectrum

ID: 44

120

150

Neutron activation system (NAS)

•The NAS measures the shot-integrated neutron yield by exposing the activation foils and counting gamma-rays emitted from the irradiated foils. •The indium (In) foils are sent by the pneumatic transfer system to two irradiation ends located at the horizontal (8-O) and lower (2.5-L) ports. •Fast neutrons are measured by using the ¹¹⁵In(n,n')^{115m}In reaction. •Thermal neutrons are measured by using the 115 In(n, γ) 116m In reaction.

Analysis model

•Neutron emission spectra were evaluated from deuteron distribution functions calculated by following guiding-center orbits of test particles using the DELTA5D.

- •Reaction rates of the n+¹¹⁵In reactions were calculated by the MCNP-6 [Analysis (A)] and only for virgin neutrons [Analysis (B)].
- •Calculation conditions are adopted from the experimental data at 4.5 s and assumed to be steady-state.

Comparison between experiments and numerical analyses

Shot No	η			η'		$\Delta n = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) \cdot \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) - \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) - \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) - \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac{1}{\sqrt{2}} \left(\Delta \right) - \frac{1}{\sqrt{2}} \left(\Delta \right) = \frac$
51100 INO.	Experiment	Analysis (A)	Analysis (B)	Experiment	Analysis (A)	Analysis (A). IVICINF-0
147429	5.63 ± 0.15	3.780	3.571	1.74 ± 0.05	0.3269	Analysis (B) virgin neutrons
147431	3.35 ± 0.18	2.904	2.081	1.74 ± 0.02	0.2701	
147433	5.58 ± 0.33	3.565	3.870	1.84 ± 0.05	0.3048	_

<u>Numerical results for the dependence of η are consistent with experiments.</u>

- •Absolute values of η and η' are different between experiment and analyses.
- • η' depends on the NB-injection direction in the analyses (weaker than η).
- ✓ Improvement of MCNP modelling, especially near the 2.5-L port
- Calculation of deuteron distributions considering the nonlinear

collision effect and time evolution of plasma conditions

CONCLUSION

- •The neutron emission anisotropy by neutral beam injection was observed and numerically analyzed in LHD deuterium plasmas.
- •The observed dependence of the neutron anisotropy on the neutralbeam-injection direction was explained by the analyses.
- •To validate the simulation of energetic-ion behavior, our analysis model is needed to be improved.
- •The neutron emission anisotropy can be used when we discuss energeticion physics from the point of view of the anisotropy of energetic ions.

ACKNOWLEDGEMENTS

• The authors would like to thank the LHD Experimental Group for their contributions

to the experiments on the neutron emission anisotropy.

• This work was supported by JSPS, Grant-in-Aid for JSPS Research Fellow, 18J12685.