Validation of the TGLF-EP+Alpha critical-gradient model of energetic particle transport in DIII-D scenarios for ITER

#### E.M. Bass<sup>1</sup>, C.S. Collins<sup>2</sup>, W.W. Heidbrink<sup>3</sup>, M.A. Van Zeeland<sup>2</sup>, and R.E. Waltz<sup>2</sup>

<sup>1</sup>UC San Diego <sup>2</sup>General Atomics <sup>3</sup>UC Irvine

Acknowledgements: G. M. Staebler (GA), He Sheng (PKU)

Presented at 2019 16<sup>th</sup> IAEA Technical Meeting on Energetic Particles in Magnetically Confined Systems Shizuoka City, Japan

#### **September 3 – 6, 2019**





Supported by US DOE GSEP-SciDAC Computations performed at NERSC



22222222

- I. Introduction
- II. TGLF-EP+Alpha local critical-gradient model of Alfvén eigenmode (AE)-driven energetic particle (EP) transport
- III. Validation against discharges from four scenarios in DIII-D discharges

IV. Summary

## I. Introduction

- II. TGLF-EP+Alpha local critical-gradient model of Alfvén eigenmode (AE)-driven energetic particle (EP) transport
- III. Validation against discharges from four scenarios in DIII-D discharges

IV. Summary

# TGLF-EP+Alpha is the simplest, fastest EP transport model available $\rightarrow$ extensive validation possible and necessary



Stiff transport forces the gradient to not (much) exceed a "critical gradient" of AE transport (essentially the linear stability threshold). TGLF-EP+Alpha is a local 1D criticalgradient model (CGM) using gyrofluid stability calculations and a stiff AE-EP transport assumption.

#### Model features:

- Highly reduced  $\rightarrow$  inexpensive
- Increasingly automated, minimal human judgment required
- Fully physics-based! No "fudge factors" or AE inputs from experiment.
- Solves for EP profile and diffusion coefficient (usable in TRANSP)

Simplifying assumptions (Maxwellian EPs; stiff, local transport; no velocity-space dependence; etc.) make **validation** especially necessary to **map applicability**.

#### Four DIII-D cases test TGLF-EP+Alpha validity across regimes

TGLF-EP+Alpha is increasingly integrated into the GACODE workflow, enabling rapid turnaround of cases. Here we examine four H-mode cases.

- I. q<sub>min</sub>=1: Shot 153071. Beam heated discharge, monotonic q with q<sub>min</sub>=1 at axis. Low central shear. Minimal EP flattening by AEs
- II. q<sub>min</sub>=2: Shot 153072. Similar to Case I, but with q<sub>min</sub>=2 and 40% lower thermal beta. Much greater EP flattening.



# Four DIII-D cases test TGLF-EP+Alpha validity across regimes

TGLF-EP+Alpha is increasingly integrated into the GACODE workflow, enabling rapid turnaround of cases. Here we examine four H-mode cases.

- I. q<sub>min</sub>=1: Shot 153071. Beam heated discharge, monotonic q with q<sub>min</sub>=1 at axis. Low central shear. Minimal EP flattening by AEs
- II. q<sub>min</sub>=2: Shot 153072. Similar to Case I, but with q<sub>min</sub>=2 and 40% lower thermal beta. Much greater EP flattening.
- **III. hybrid**: Shot 161401. ITER steady-state-relevant scenario with strong EP flattening driven by AEs and a 3/2 tearing mode.



# Four DIII-D cases test TGLF-EP+Alpha validity across regimes

TGLF-EP+Alpha is increasingly integrated into the GACODE workflow, enabling rapid turnaround of cases. Here we examine four H-mode cases.

- I. q<sub>min</sub>=1: Shot 153071. Beam heated discharge, monotonic q with q<sub>min</sub>=1 at axis. Low central shear. Minimal EP flattening by AEs
- II. q<sub>min</sub>=2: Shot 153072. Similar to Case I, but with q<sub>min</sub>=2 and 40% lower thermal beta. Much greater EP flattening.
- **III. hybrid**: Shot 161401. ITER steady-state-relevant scenario with strong EP flattening driven by AEs and a 3/2 tearing mode.
- **IV. Super H-mode**: Shot 171322. A high-confinement H-mode with relatively little EP transport.

Agreement with experiment is mixed, but extremely encouraging for a such a reduced model. **Big differences from experiment tend to show too little AE transport.** 

C. T. Holcomb et al., PoP **22**, 055904 (2015) W.. W. Heidbrink et al., PPCF **56**, 095030 (2014) N. N. Gorelenkov et al., NF **56**, 112015 (2016)

G. J. Kramer et al., NF **57**, 056024 (2017) Zhen-Zhen Ren et al., PoP **25**, 122504 (2018) C.C. Petty et al., NF **57**, 116057 (2017)

D. Liu talk yesterday

EM Bass/IAEA EP TM/September 2019

## I. Introduction

#### II. TGLF-EP+Alpha local critical-gradient model of Alfvén eigenmode (AE)-driven energetic particle (EP) transport

III. Validation against discharges from four scenarios in DIII-D discharges

IV. Summary

# The 1D Alpha EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations<sup>1</sup>

"Alpha" transport EP continuity equation



For present DIII-D cases, D<sub>micro</sub> is effectively shut off.

**Critical gradient** as a function of *r* determined by TGLF-EP, the **crucial input**.

<sup>1</sup>E.M. Bass and R.E. Waltz, PoP **17** 112319 (2010) <sup>2</sup>Angioni and Peters, PoP **15** 052307 (2008)

Boundary condition: Edge  $n_{\rm ED}$ is set to zero (pessimistic edge loss estimate). fusion  $S = n_{\rm D} n_{\rm T} \langle \sigma v \rangle$ source classical  $n_{SD} = \int_0^\infty \frac{S\tau_s}{2} \frac{\Theta(E_\alpha - E)}{E^{3/2}}$ slowing-down density Gaffey 1976 stiff AE transport AE transport level is (AU) part of solution  $m_{icro} + D_{AE}$ most unstable r critical gradient turbulence 0.2 0.8 1.0 1.2 0.00.4 0.6  $(\partial n_{EP}/\partial r)/(\partial n_{EP}/\partial r)$ 

# TGLF-EP code uses the gyro-Landau fluid TGLF model to find the AE-EP critical gradient where $\gamma_{AE} \rightarrow 0$



**TGLF-EP**<sup>1</sup>: A parallelized, automated wrapper that searches across mode number and drive strength for the critical gradient.

<sup>1</sup>He Sheng, R.E. Waltz, and G.M. Staebler, PoP **24**, 072305 (2017)

# TGLF-EP code uses the gyro-Landau fluid TGLF model to find the AE-EP critical gradient where $\gamma_{AE} \rightarrow 0$



A local linear stability analysis is required to find the local critical gradient. We can use GYRO (gyrokinetic), but it's expensive and time consuming.

Benchmark GYRO simulations in ITER-like conditions track two main AE branches (with Maxwellian EPs).

Specially tuned, TGLF (gyro-Landau fluid) matches GYRO (gyrokinetic) AE spectrum well, but is **>100 times cheaper**.

**TGLF-EP**<sup>1</sup>: A parallelized, automated wrapper that searches across mode number and drive strength for the critical gradient.

<sup>1</sup>He Sheng, R.E. Waltz, and G.M. Staebler, PoP **24**, 072305 (2017)

## TGLF-EP automatically finds the most-unstable AE critical gradient at each radius



## The TGLF-EP+Alpha validation workflow feeds the predicted EP diffusion coefficient back into TRANSP



## The experimental EP pressure profile is determined as the difference between EFIT total pressure and thermal pressure



We will compare the TGLF-EP+Alpha+TRANSP pressure profile with this experimental beam EP pressure.

## I. Introduction

 II. TGLF-EP+Alpha local critical-gradient model of Alfvén eigenmode (AE)-driven energetic particle (EP) transport

#### III. Validation against discharges from four scenarios in DIII-D discharges

IV. Summary

### The q<sub>min</sub>=1 case has finite but small transport



### The q<sub>min</sub>=1 case has finite but small transport



#### **Neutrons:**

Classical/expt.:  $1.23 \pm 0.02$ TGLF-EP+Alpha/expt.:  $1.024 \pm 0.02$ 

Only very slight over-prediction of EP pressure and neutrons, **solid agreement**.

### The q<sub>min</sub>=2 case has much stronger AE transport



### The q<sub>min</sub>=2 case has much stronger AE transport



#### **Neutrons:**

Classical/expt.:  $1.79 \pm 0.10$ TGLF-EP+Alpha/expt.:  $1.21 \pm 0.06$ 

Roughly 20% over-predicition of EP pressure and neutrons, but trend (increase  $q \rightarrow$  increase transport) clearly captured.

EM Bass/IAEA EP TM/September 2019

Bass, E.M. Slide 19

# The hybrid case has large EP loss from AEs and a tearing mode missed by TGLF-EP



# The hybrid case has large EP loss from AEs and a tearing mode missed by TGLF-EP



#### **Neutrons:**

Classical/expt.: 1.66 ± 0.10 TGLF-EP+Alpha/expt.: 1.44 ± 0.09

Most experimental EP deficit unaccounted for. The observed **3/2 tearing mode** (missing in TGLF-EP) is the likely cause.

#### TGLF-EP shows very little AE activity in the super H-mode



#### **Neutrons:**

Classical/expt.: 0.99 ± 0.15 TGLF-EP+Alpha/expt.: 0.97± 0.15

> Within fit error, neutrons and the **experiment and TGLF-EP+Alpha** EP pressure **are basically classical**.

> > EM Bass/IAEA EP TM/September 2019

#### Leading local mode frequencies span AE range, possibly BAEs or EAEs are present

Frequencies at radii near instability peak (most unstable  $k_{\theta}\rho_{FP}$ )



Frequency jumps across domain are uncommon, but sometimes occur.

Structure of q<sub>min</sub>=1, q<sub>min</sub>=2, and hybrid cases generally TAE-like: wide or double-peaked in ballooning angle.

Low frequencies in hybrid case might be BAEs (seen in M3D-K<sup>1</sup>).

In super H-mode case, most unstable modes are narrow in ballooning-space (low  $k_r$ ). Possibly EAEs.

## I. Introduction

- II. TGLF-EP+Alpha local critical-gradient model of Alfvén eigenmode (AE)-driven energetic particle (EP) transport
- III. Validation against discharges from four scenarios in DIII-D discharges

#### IV. Summary

#### Summary

- The TGLF-EP+Alpha critical gradient model of AE-EP transport has been validated across a wide range of DIII-D H-mode cases.
- TGLF-EP+Alpha agrees quite well with measurement even with the considerable simplifiations used (Maxwellian EPs; critical-gradient, 1D transport; local stability and transport)
- Significant disagreement is found in the hybrid case, where a non-AE mode (a 3/2 tearing mode) likely drives additional EP transport.

#### Improvements for the future:

- Add energy dependence in D<sub>EP</sub> from analytic model.
- Continue to streamline the workflow and make it accessible through OMFIT.
- Possibly add additional EP transport mechanisms (e.g., non-EP driven MHD).
- Pitch-angle dependence of transport (for torque and current drive modeling).
- Non-Maxwellian stability effects?

All values reported on axis. For  $q_{\min}$ , the lowest q is always on or very near axis ( $\rho$ =0 discarded).

|                     | $\beta_{\rm e}$ (%) | $\beta_{i}$ (%) | $\beta_{\mathrm{EP}}$ (%) | $q_{ m min}$ | $B_t(T)$ | $v_A/c_s$ |
|---------------------|---------------------|-----------------|---------------------------|--------------|----------|-----------|
| q <sub>min</sub> =1 | 2.88                | 3.97            | 4.61                      | 1.00         | 1.66     | 8.34      |
| q <sub>min</sub> =2 | 2.16                | 2.77            | 5.03                      | 2.05         | 1.62     | 9.62      |
| hybrid              | 2.54                | 3.93            | 5.72                      | 1.24         | 1.80     | 8.87      |
| super H-mode        | 5.13                | 8.02            | 1.78                      | 1.24         | 2.03     | 6.25      |

## Inexpensive, automated TGLF-EP confirms shear and elongation are stabilizing, higher q is destabilizing



But... Most transport occurs at very low shear, where q scaling is much weaker. We will see that the q profile matters surprisingly little in practice.

<sup>1</sup>He Sheng et al., PoP **24**, 072305 (2017)