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Characteristic features of the problem

q Pellets offer more controllable penetration of the injected material  
than MGI

q Hot plasma electrons heat the pellet surface. The ablated gas 
throttles the electron heat flux to the surface until 3D expansion 
makes the gas shield semi-transparent

q Collisional scattering and slowing down of the hot electrons in the 
pellet material need a kinetic description with the electron 
gyromotion  included

q Strong backscattering of the hot electrons reduces the 
electrostatic sheath potential

q Elastic scattering reduces the hot electron penetration depth and   
the resulting ablation rate 
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Schematic of high-Z pellet ablation
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Magnetic field

Unmagnetized hot electrons diffuse radially

Magnetized hot electrons diffuse 
along the field lines  

Outgoing mass flux is constant 
within the ablation cloud
G = 4πMr 2NV

Penetration depth of the hot electrons is

δ p = Dτ drag

Hot electron velocity distribution is nearly isotropic 
due to strong elastic scattering

The solid pellet radius decreases 
slowly due to ablation

The ablation cloud is semi-transparent
for hot electrons 

The electrostatic sheath potential scales as Z −1/3



Strong backscattering reduces electrostatic 
sheath

q Hot electron flux into the pellet scales as 

q Return flux of the emitted cold electrons satisfies the Child-
Langmuir law:

q The sheath width is roughly the Debye  length:

q The return cold flux balanced the hot particle flux, which gives
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Ablation scenario revision for high-Z pellets

q Hot electron diffuse into the pellet  until they slow down due to 
electron drag. Their penetration depth is                                    . 
Strong elastic scattering reduces the penetration depth and the        
resulting ablation rate.

q The heated surface layer of the pellet expands radially and 
becomes semi-transparent when it broadens to pellet radius. The 
flow is roughly sonic at this point (          ).

q When the flow becomes sonic, the semi-transparent cloud is heated 
to a temperature 

q Half of the incoming heat flux is absorbed in the cloud :
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Flow velocity, cloud density and ablation rate

q Flow velocity for sonic expansion:

q Density of semi-transparent ablation cloud:

q Ablation rate estimate:
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Kinetic heating calculation
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q Kinetic equation for hot electrons:

q The hot electron distribution is nearly isotropic in the high-Z case, 
i.e.                             . 

q The kinetic equation reduces to an axisymmetric diffusion- type 
equation for the isotropic distribution:

q Power deposition by hot electrons per unit volume:
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Two reductions of the kinetic equation

q Strongly magnetized hot electrons:

q Unmagnetized hot electrons:

q Normalized line-integrated density:

q Normalized time-like velocity variable: 
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Comparison of power deposition profiles for 
unmagnetized and magnetized hot electrons 
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Gas flow modeling
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qSpherical expansion
qCloud remains neutral with a constant adiabatic index    
qSurface boundary condition implies negligible sublimation energy
qRadiative losses not accounted for
qIgnore the electrostatic sheath which scales as 

qWe use the fluid model from [Parks and Turnbull 1978], 
but with a kinetic calculation of the power deposition
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Reduction of ablation rate due to elastic scattering
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• Predictions from [Sergeev et al. 2006] are 
too high.

• Difference between  our results and 
[Parks & Samulyak] shows significant 
sensitivity  of the heat deposition to 
elastic scattering.

• All ablation rates agree well in pellet 
radius scaling.



Summary

q The first principle kinetic calculation of the heat deposition gives a 
noticeably lower ablation rate for the high-Z pellets than the pre-
existing estimates

q Strong elastic scattering of the incident electrons reduces the role 
of electrostatic shielding

q Magnetization of the incident electrons can modify the heat 
deposition geometry significantly

q Kinetic calculations of the heat deposition provide an updated 
input for fluid simulations of the pellet ablation process
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