Modification of Alfvén Eigenmode Drive and Nonlinear Saturation Through Variation of Beam Modulation in DIII-D

MA Van Zeeland¹

WW Heidbrink², M Austin³, L Bardoczi¹, C Chrystal¹, CS Collins¹, N Crocker⁴, XD Du¹, V Duarte⁵, J Gonzalez-Martin⁶, R Hong⁴, G McKee⁷, M Garcia-Munoz⁶, N Gorelenkov⁵, Z Lin², S. Munaretto¹, C Petty¹, M Podesta⁵, T Rhodes⁴, D Spong⁸, K Thome¹, Y Todo⁹, Z. Yan⁷, G. Yu¹⁰, Y Zhu¹⁰

¹General Atomics, San Diego, CA USA
²University of California Irvine, CA USA
³University of Texas Austin, TX USA
⁴University of California Los Angeles, CA USA
⁵Princeton Plasma Physics Laboratory, NJ USA
⁶Universidad de Sevilla, Sevilla, Spain
⁷University of Wisconsin Madison, WI USA
⁸Oak Ridge National Laboratory, TN USA
⁹National Institute for Fusion Science, Japan
¹⁰University of California Davis, CA USA

Presented at the 16th IAEA TM on Energetic Particles in Magnetic Confinement Systems Shizuoka, Japan, Sept. 3-6, 2019

000000

2000000

- Alfvén Eigenmodes (AEs) are driven unstable by ~80kV beams in DIII-D
- They cause fast ion transport and reductions in performance
- Goal is to understand:
 - Modes
 - Mode drive
 - Saturation (how amplitude is set)
 - Impact on fast ion profile
 - How to control

- Alfvén Eigenmodes (AEs) are driven unstable by ~80kV beams in DIII-D
- They cause fast ion transport and reductions in performance
- Goal is to understand:
 - Modes
 - Mode drive
 - Saturation (how amplitude is set)
 - Impact on fast ion profile
 - How to control

A lot of effort over the last 10 years has been focused on these

- Alfvén Eigenmodes (AEs) are driven unstable by ~80kV beams in DIII-D
- They cause fast ion transport and reductions in performance
- Goal is to understand:
 - Modes
 - Mode drive
 - Saturation (how amplitude is set)
 - Impact on fast ion profile
 - How to control

The expt. described here focuses on these - ultimately want to test details of drive and saturation

- Alfvén Eigenmodes (AEs) are driven unstable by ~80kV beams in DIII-D
- They cause fast ion transport and reductions in performance
- Goal is to understand:
 - Modes
 - Mode drive
 - Saturation (how amplitude is set)
 - Impact on fast ion profile
 - How to control

The expt. described (My) here focuses on these - ultimately want to test details of drive and saturation

Beam Modulation Can Have Significant Implications for AE Drive^{1,2}

- Constant beams have nice slowing down distribution function
 - This is or Maxwellian is often assumed in theory

- 1. V.S. Belikov and O.A. Silivra, NF 34 1522 (1994)
- 2. Y. Kolesnichenko, V.v. Lutsenko, NF (In Submission)

Beam Modulation Can Have Significant Implications for AE Drive^{1,2}

- Constant beams have nice slowing down distribution function
 - This is or Maxwellian is often assumed in theory
- Beam modulation transiently creates bump-on-tail velocity distribution that can drive modes
- Modulation period changes bump-on-tail feature
 - Often chosen arbitrarily or for diagnostics, NOT physics

1. V.S. Belikov and O.A. Silivra, NF 34 1522 (1994)

2. Y. Kolesnichenko, V.v. Lutsenko, NF (In Submission)

Beam Modulation Can Have Significant Implications for AE Drive^{1,2}

- Constant beams have nice slowing down distribution function
 - This is or Maxwellian is often assumed in theory
- Beam modulation transiently creates bump-on-tail velocity distribution that can drive modes
- Modulation period changes bump-on-tail feature
 - Often chosen arbitrarily or for diagnostics, NOT physics
- For Interleaved beams, the timedependent beam mix depends on modulation period
- In this experiment, vary modulation period to investigate impact on AEs – Do we see a change in drive from these effects?

8

- 1. V.S. Belikov and O.A. Silivra, NF 34 1522 (1994)
- 2. Y. Kolesnichenko, V.v. Lutsenko, NF (In Submission)

2ms after Tangential NBI turn-on, Tangential and Perp NBI Interleaved 10ms on/off period

Outline

- Experiment background and measurements of the impact of beam modulation period on AEs
- Analysis of the bump-on-tail contribution to AE drive in expt.
 - Imaging Neutral Particle Analyzer (INPA) measurements
 - TRANSP and Kick Modeling
 - MEGA Modeling
- Measurements of TAE growth and saturation during individual beam pulses
 - Large amplitude oscillations
 - Variation in saturation with drive and drag
 - Turbulence measurements during TAE saturation

Outline

- Experiment background and measurements of the impact of beam modulation period on AEs
- Analysis of the bump-on-tail contribution to AE drive in expt.
 - Imaging Neutral Particle Analyzer (INPA) measurements
 - TRANSP and Kick Modeling
 - MEGA Modeling
- Measurements of TAE growth and saturation during individual beam pulses
 - Large amplitude oscillations
 - Variation in saturation with drive and drag
 - Turbulence measurements during TAE saturation

Experiment Scans Interleaved Beam Modulation Period to Investigate Impact on AEs

81kV

Tana

55kV Tang. 330L

- Standard L-mode DIII-D current ramp scenario
 - Multiple AEs
- Diagnostic beam fixed at 55kV
- 80kV Tangential and 75kV Perpendicular beam modulated out of phase

- V_B/V_A ~ 0.3-0.4

- Modulation period varied from 7ms on/off to 30 ms on/off then steady
 - Typical slowing down time from 80kV to 50kV
 20ms
- Impact on modes and fast ions documented

The Distribution Function Evolution Varies Significantly with Modulation Period

 The overall timeaveraged dist. function is similar for all modulation periods

The Distribution Function Evolution Varies Significantly with Modulation Period

- The overall timeaveraged dist. function is similar for all modulation periods
- Largest variation is at highest energies
- Injected pitch changes with beam
- For shorter mod. periods (~12ms), positive dF/dE is always present above 60kV

The Distribution Function Evolution Varies Significantly with Modulation Period

- The overall timeaveraged dist. function is similar for all modulation periods
- Largest variation is at highest energies
- Injected pitch changes with beam
- For shorter mod. periods (~12ms), positive dF/dE is always present above 60kV
- For longer mod. periods (~30ms) becomes slowing down before end of pulse

Unstable AE Spectra Changes With Modulation Period

- Density and current profile evolution wellmatched
- CO2 interferometers give broad overview of activity
- From 7ms to steady tangential beam, mix of RSAE and TAE changes to primarily TAE
- Same time averaged power for all modulation cases

At Large Radii, TAEs are Dominant and Persistence Depends on Modulation Period

- Multiple TAEs unstable in all cases
 - n~3-5
- TAEs persist in 12ms on/off and steady beam cases
- TAEs intermittent and weaker for 30ms on/off period
- TAEs strongest for steady tangential beam
- Modulated TAE and contributions to drive will be looked at in detail in next section of talk

At Inner Radii, RSAEs Dominant for Short Modulation Periods But Shift to BAEs For Longer

- 12 ms on/off, multiple RSAEs and some indication of BAEs
- 30 ms on/off and steady tangential beam case have weak RSAE and dominant BAE
- Shift in spectrum is NOT currently understood
 - Matched density, current, etc.
 - Te higher in BAE cases
- BAE dependence on beam and plasma parameters discussed in detail this afternoon (Heidbrink, 1-5)
 - BAE favors tang. beam

AE Impact on Fast Ion Confinement Also Depends on Modulation Period

- AE amplitude is integrated power in AE freq. band
 - 30 ms on/off has lowest overall amplitudes
- Neutron emission and stored energy compared to classical TRANSP calculations
 - A deficit indicates fast ion transport
- All conditions have relatively large initial fast ion deficits then become classical by t=1100ms
- 30 ms on/off has least fast ion transport
- All pretty similar despite large difference in AEs = critical gradientlike behavior*

Outline

- Experiment background and measurements of the impact of beam modulation period on AEs
- Analysis of the bump-on-tail contribution to AE drive in expt.
 - Imaging Neutral Particle Analyzer (INPA) measurements
 - TRANSP and Kick Modeling
 - MEGA Modeling
- Measurements of TAE growth and saturation during individual beam pulses
 - Large amplitude oscillations
 - Variation in saturation with drive and drag
 - Turbulence measurements during TAE saturation

The TAEs At Large Radius Are Driven Preferentially During Tangential Beam Pulses

- At each Tang. beam pulse, one or more TAEs unstable
- INPA probes local fast ion
 density (n_{FI}) near tangential
 beam pitch at TAE radius
 - Will use as proxy for radial gradient in local fast ion density
 - Dedicated INPA talk
 Friday (X.D. Du, 1-15)

The TAEs At Large Radius Are Driven Preferentially During Tangential Beam Pulses

- At each Tang. beam pulse, one or more TAEs unstable
- INPA probes local fast ion density (n_{Fl}) near tangential beam pitch at TAE radius
 - Will use as proxy for radial gradient in local fast ion density
 - Dedicated INPA talk
 Friday (X.D. Du, 1-15)
- Modes driven unstable after beam turn-on once n_{EP} increases and stabilized when n_{EP} returns to that level
- As q_{min} drops,TAE is harder to drive and unstable at increasingly higher *n*_{EP}
 - Stability scan w/ qmin

For Short Modulation Periods Majority of TAEs Remain Unstable Between Tangential Beam Pulses

- Mode amplitudes still clearly peak during tangential beam pulses
- INPA measured 60-80kV tangential beam ion density doesn't plateau at each pulse like 30ms on/off

For Short Modulation Periods Majority of TAEs Remain Unstable Between Tangential Beam Pulses

- Mode amplitudes still clearly peak during tangential beam pulses
- INPA measured 60-80kV tangential beam ion density doesn't plateau at each pulse like 30ms on/off
- Range of n_{Fl} less than for long 30ms on/off
- Driving density doesn't decay enough between pulses to stabilize TAE
- More persistent modes can lead to more transport
 - Even with same avg. injected power

TAE Amplitude Evolution During a Tangential Beam Pulse Indicates Energy Gradient Not Primary Drive

- Distribution function evolution analyzed near TAE location
- n_{FI} = local fast ion density (60-80kV) in pitch range populated by tangential beam
- dF/dE is max over energy and pitch range

TAE Amplitude Evolution During a Tangential Beam Pulse Indicates Energy Gradient Not Primary Drive

- Distribution function evolution analyzed near TAE location
- n_{FI} = local fast ion density (60-80kV) in pitch range populated by tangential beam
- dF/dE is max over energy and pitch range
- TAE amplitude evolution follows n_{FI} closely
 - Doesn't begin to decay until beam turn-off

TAE Amplitude Evolution During a Tangential Beam Pulse Indicates Energy Gradient Not Primary Drive

- Distribution function evolution analyzed near TAE location
- n_{FI} = local fast ion density (60-80kV) in pitch range populated by tangential beam
- dF/dE is max over energy and pitch range
- TAE amplitude evolution follows n_{FI} closely
 - Doesn't begin to decay until beam turn-off
- TAE at later beam pulse is not unstable until after max dF/dE

TRANSP Kick Model* Used to Calculate Energy Exchange With TAE For Different Beam Sequences

Eigenmodes calculated with NOVA

- n=3 TAE identified with localization and frequency similar to expt.
- Kick probabilities (phase space dependent energy exchange) calculated with ORBIT
- Kick model in TRANSP follows beam ion energy exchange with mode in fixed equilibrium
 - Mode set to low amplitude
- Beam programming varied:
 - Steady tangential beam
 - Steady perpendicular beam
 - Interleaved 12ms on/off
 - Interleaved 30ms on/off

- Tangential beam significantly more drive than Perp. beam consistent with data
- Time avg. power transfer for 12ms on/off and 30ms on/off same - consistent with small dF/dE role

- Tangential beam significantly more drive than Perp. beam consistent with data
- Time avg. power transfer for 12ms on/off and 30ms on/off same - consistent with small dF/dE role
- Power to mode coherently averaged over multiple beam pulses to reduce noise

- Tangential beam significantly more drive than Perp. beam consistent with data
- Time avg. power transfer for 12ms on/off and 30ms on/off same - consistent with small dF/dE role
- Power to mode coherently averaged over multiple beam pulses to reduce noise
- 12ms on/off power to mode increases throughout tangential pulse then decays during perp. beam

- Tangential beam significantly more drive than Perp. beam - consistent with data
- Time avg. power transfer for 12ms on/off and 30ms on/off same - consistent with small dF/dE role
- Power to mode coherently averaged over multiple beam pulses to reduce noise
- 12ms on/off power to mode increases throughout tangential pulse then decays during perp. beam
- 30ms on/off power to mode rises rapidly then decreases slightly ($\sim 5\%$) until steady state
 - Is small difference from peak representative of dF/dE effects?

10

n

20

30

Time (ms)

Perp.

40

50

60

MEGA* Calculations With Realistic Beam Ion Distribution Function Find TAE Similar to Experiment

- MEGA run in delta-F mode with functional form for beam-like distribution function
- n=3 TAE found at same location and frequency as expt.
- Mode is unstable at measured Beta-EP for tangential beam
- Consistent with expt., mode not found for perpendicular beam at 2X Beta-EP

MEGA Used To Model Bump-On-Tail Effects on AE Stability

- Beam-like distribution modified to include Bump-on-Tail contribution
- Bump-on-Tail parameterized by energy gradient and peak on top of slowed down beam
- Mode stability calculated for range of Bump-on-Tail parameters
 - Total fast ion pressure profile fixed

MEGA Shows Minor Impact Of Bump-on-Tail Feature On TAE Stability

- Very small (~5%) change in growth rates over entire parameter range scanned
- TAE still most unstable mode for all cases
 - No RSAE or other core mode

MEGA Shows Energy Exchange With TAE Occurs At Highest Energies

 Most efficient energy exchange happens near injection energy

MEGA Shows Energy Exchange With TAE Occurs At Highest Energies

- Most efficient energy exchange happens near injection energy
- Energy gain/loss occurs due to gradients across resonances

MEGA Shows Energy Exchange With TAE Occurs At Highest Energies

- Most efficient energy exchange happens near injection energy
- Energy gain/loss occurs due to gradients across resonances
- Resonances near bumpon-tail are parallel to positive dF/dE gradient = no energy exchange
- Energy exchange due primarily to dF/dP\u00f5

Outline

- Experiment background and measurements of the impact of beam modulation period on AEs
- Analysis of the bump-on-tail contribution to AE drive in expt.
 - Imaging Neutral Particle Analyzer (INPA) measurements
 - TRANSP and Kick Modeling
 - MEGA Modeling
- Measurements of TAE growth and saturation during individual beam pulses
 - Large amplitude oscillations
 - Variation in saturation with drive and drag
 - Turbulence measurements during TAE saturation

Individual Tangential Beam Pulse Shows Mode Growth and Saturation With Large Amplitude Oscillations

- Typically large Fourier windows used (~5ms) to reduce noise
 - ~500 waveperiods

Individual Tangential Beam Pulse Shows Mode Growth and Saturation With Large Amplitude Oscillations

- Typically large Fourier windows used (~5ms) to reduce noise
 ~500 waveperiods
- When Fourier window reduced (~0.5ms, 95% overlap) noise increases but growth and intermittent amplitude evolution become apparent
 - Mode not visible in raw data
- Large (δA/A~75%) intermittent amplitude oscillations
 - Period ~ 10-100 waveperiods
- Frequency relatively steady $\delta f/f < 2\%$

TAE Growth During Tangential Beam Pulse Exploited To Test Models for Mode Saturation

Expt. Approach

Fix beginning phase until t=600ms pulse

TAE Growth During Tangential Beam Pulse Exploited To Test Models for Mode Saturation

Expt. Approach

- Fix beginning phase until t=600ms pulse
- At single pulse, scan parameters expected to modify mode saturation (Drive, drag, scattering)
 - Drive: Add/Remove beam power
 - Drag: Add ECH at mode location
- Test if mode can be varied over range of saturation scenarios
 - Steady-freq. & no amp. Oscillations
 - Steady-freq. & large amp. oscill.
 - Chirping
- Look changes in turbulence at mode location

Multiple MHD and Turbulence Diagnostics Were Positioned Exactly at TAE Location

 TAE mode structure and evolution from: Electron Cyclotron Emission (ECE), ECE Imaging (ECEI)

Multiple MHD and Turbulence Diagnostics Were Positioned Exactly at TAE Location

- TAE mode structure and evolution from: Electron Cyclotron Emission (ECE), ECE Imaging (ECEI)
- Turbulence variation during TAE saturation from: Beam Emission Spectroscopy (BES) , Doppler Backscattering (DBS) and Correlation ECE (CECE)

Varying Drive and Scattering Leads to Different TAE Saturation Behavior

• Ref. Case: Larger amp. oscillations ($\delta A/A$) than target and multiple TAEs

Varying Drive and Scattering Leads to Different TAE Saturation Behavior

- Ref. Case: Larger amp. oscillations ($\delta A/A$) than target and multiple TAEs
- Increased Drive (added 2nd Tang. NBI): Higher amplitude and smaller δA/A, also, more frequent osc.

Varying Drive and Scattering Leads to Different TAE Saturation Behavior

- Ref. Case: Larger amp. oscillations ($\delta A/A$) than target and multiple TAEs
- Increased Drive (added 2nd Tang. NBI): Higher amplitude and smaller δA/A, also, more frequent osc.
- Reduced Drag (added ECH): Amplitude and δA/A between other cases and more frequent oscillations than ref. case
- Change in behavior can be directly compared to modeling for validation

Conclusions

- Short beam modulation periods relative to the slowing down time can create a persistent bump-on-tail feature
- A DIII-D experiment which varied modulation period of different geometry beams found significant differences in AE activity and EP transport for the same time-averaged injected power
- Detailed analysis of an individual TAE using TRANSP, Kick Modeling and MEGA found
 - No strong role of energy gradient drive
 - TAE modulation with interleaved beams likely pitch dependence combined with slowing down of tangential beam between pulses
- At saturation, modulated TAEs were found to exhibit large (δA/A~75%) intermittent amplitude oscillations with a periods ~ 10-100 waveperiods and little or no chirping

