Quasi-periodic frequency sweeping in electron cyclotron emission of mirror-confined plasma sustained by high-power microwaves

Mikhail Viktorov

Laboratory of Applied Plasma Physics Institute of Applied Physics of Russian Academy of Sciences Nizhny Novgorod, Russia

Collaborators: Alexander Shalashov, Egor Gospodchikov, Dmitry Mansfeld, Sergey Ilichev, Sergey Golubev

> 16th Technical Meeting on Energetic Particles in Magnetic Confinement Systems — Theory of Plasma Instabilities, 3-6 September 2019, Shizuoka City, Japan

Outline

- Motivation
- Dedicated experiments on ECRH-driven instabilities
- Application of quasi-linear model to many observed features of stimulated emission in ECR plasma
- Beyond the quasi-linear theory
- SMIS-37 experimental facility
- Chirping microwave emission during plasma decay stage
- Application of the Berk-Breizman model to the experimental data
- Summary

Plasma instabilities due to fast particles

W. Li et al., Geophys. Res. Lett., 38, L14103, 2011

5.955

5.940

5.945

5.950

Time (s)

S.D. Pinches et al., Plasma Phys. Control. Fusion, **46**, S47, 2004 S.E. Sharapov et al., Nucl. Fusion, **53**, 104022, 2013

Frequency sweeping Toroidal Alfven Eigenmodes

Tokamaks:

- ASDEX-Upgrade
- MAST
- JET
- DIII-D
- NSTX
- JT-60U

Stellarator TJ-II

Frequency range: 30-300 kHz

- (a) Magnetic spectrogram of NBI-driven Alfvén instabilities in JT-60U discharge E36379;
- (b) Mirnov coil signal

Dedicated experiments on ECRH-driven instabilities

• Broadband oscilloscopes (up to 60 GHz / 160 GSa/s) allow direct recording of E(t)

JYFL Ion Source (Univ Jyvaskyla) 250 W @ 11-14 GHz

GDT (Budker Inst) 800 kW @ 54.5 GHz

"Zoo" in dynamical spectrum of mw emission

GDT (Budker Inst)

Two lessons that we have learned

Lesson 1: Quasi-linear theory for maser instability

Lesson 2: Hole & clump dynamics in ECE

Wave-particle resonance in a magnetic mirror

Quasi-linear diffusion in a magnetic mirror

$$H = H_0 + \frac{e}{mc} \mathbf{A} \cdot \mathbf{p} = H_0 + \operatorname{Re} \left[C(t) \sum_{s,n} V_{sn} \exp(is \xi_{\perp} + in \xi_{\parallel} - i\omega_0 t) \right]$$

- 1) Interaction with waves conserves $K = mc^2(\gamma 1) I_\perp \omega_0 = \text{const}$ then consider $(I_\perp, I_\parallel) \rightarrow (K, \kappa)$, i.e. one-dimensional distribution function $F(t, \kappa)$
- 2) Self-consistent electromagnetic field (fixed mode)

$$|C(t)|^2 \rightarrow E(t), V_{sm} \rightarrow D, K$$

3) Describes both ECR heating and maser instability!

Quasi-linear model describes many observed features of stimulated emission in simple terms

- X-mode emission at the start-up phase
- Z-mode emission in rarefied decaying plasma
- Whistler waves during the stationary ECR

Reviewed in Shalashov et al. Phys. Plasmas 24 032111 (2017)

• Excitation of plasma waves under the double-plasma-resonance

Mansfeld et al. Planet. Space Sci. 164158 (2018)

Stochastic grouping of ECE bursts in a decaying plasma

Shalashov et al. PPCF 54 085023 (2012)

• Fast electron losses at GDT

Shalashov et al. Phys. Plasmas 24 082506 (2017)

• Controlled transition between periodic and CW regimes

Shalashov et al. PRL 120 155001 (2018) Shalashov et al. EPL. 24 35001 (2018)

JYFL ECRIS

Stabilization of burst activity by two-frequency ECRH

Tarvainen et al. Rev.Sci. Instr. 86 023301 (2015) - experiment

theory is still not finished!

SMIS37

Beyond the quasi-linear theory

- Fast periodic frequency sweeps in ECE discovered at SMIS-37
- Observed at fixed lines in rare plasma after ECRH switch-off
- No precipitations of fast electrons

9 (b

Low power compared to other inst.

	ECRH	Decay
Background plasma density Fast el. density (1–30 keV) Fast el. density (>100 keV)	$\sim 10^{13} \text{ cm}^{-3}$ 10^{11} cm^{-3} 10^9 cm^{-3}	$ \begin{array}{c} \lesssim 10^{11} \ {\rm cm}^{-3} \\ 10^{11} \ {\rm cm}^{-3} \\ 10^{9} \ {\rm cm}^{-3} \end{array} $
Bulk electron temperature Fast electron energy (ave.) Fast electron energy (max.)	up to 300 eV 10 keV 350 keV	$\sim 1 \text{ eV}$ 10 keV 300 keV
Heating frequency $\omega_{\rm ECH}/2\pi$ Min. cyclotron freq. $\omega_{\rm c0}/2\pi$ Electron collision rate $\nu_{\rm coll}$	37.5 GHz 10 GHz	- 8 GHz
background plasma 300 keV electrons	$5 \cdot 10^5 \text{ s}^{-1}$ 10 s ⁻¹	10^7 s^{-1} 0.1 s^{-1}

Experimental setup

Experimental setup

The synchronization scheme of the experimental setup

The synchronization scheme of the experimental setup

Plasma parameters

A.V. Vodopyanov, S.V. Golubev, A.G. Demekhov, V.G. Zorin, D.A. Mansfeld, S.V. Razin, A.G. Shalashov, JETP, 2007, Vol. 104, No. 2, pp. 296–306.

Microwave diagnostics of plasma emission

Broadband horn antenna 2-20 GHz, input aperture 104x78 mm² + low-pass filter 24.660 GHz (30dB rejection frequency)

Broadband oscilloscope KeySight DSA-Z 594A

- 4 channels, analog bandwidth 33 GHz, sampling rate 80 GSa/s (up to 25 ms)
- 2 channels, analog bandwidth 59 GHz, sampling rate 160 GSa/s (up to 12.5 ms)
- Up to 2 billions samples per channel
- Maximum temporal resolution 6.25 ps (160 GSa/s)

Overview of plasma microwave emission

Plasma microwave emission during decay stage

Fine structure of the microwave emission spectrum

Fine structure of the microwave emission spectrum (2)

Fine structure of the microwave emission spectrum (3)

Transition from chirping to steady state emission

M. Lesur, PhD thesis, 2010, eprint arXiv:1101.5440

The microwave emission frequency bands

- Open cylindrical inserts lead to efficient mode selection of the central discharge chamber.
- Only those modes for which the cutoff frequencies of the cylindrical inserts modes with the same azimuthal number are higher than the fundamental frequency of the central section remain high-Q.

Noise-like emission during plasma decay stage

Noise-like emission during plasma decay stage

Noise-like emission during plasma decay stage: seeds of narrow-band mw-emission

Return to basic wave-particle resonance in a magnetic mirror (at the fundamental ECR)

$$\Omega(I_{\perp}, I_{\parallel}) = \overline{\omega}_{c} + n\omega_{b} = \omega_{0}$$

For very fast electrons bounce resonances do not overlap,

$$\omega_b / \overline{\omega}_c \sim 1/30$$

 $\omega_b \gg v_{\rm eff}, \Delta \omega$

then we consider one separate resonance *n*

$$H = H_0 + \frac{e}{mc} \mathbf{A} \cdot \mathbf{p} = H_0 + \operatorname{Re} \left[C(t) \sum_{n} V_n \exp(\underbrace{i\xi_{\perp} + in\xi_{\parallel}}_{i\xi} - i\omega_0 t) \right]$$

$$\frac{\partial f}{\partial t} + \Omega \frac{\partial f}{\partial \xi} - \operatorname{Re}\left[iV_{\bar{n}}C(t)\,\mathrm{e}^{i\xi - i\omega_0 t}\right] \frac{\partial\Omega}{\partial I_{\perp}} \frac{\partial f}{\partial\Omega} = \operatorname{St} f$$

Effective one-dimensional non-linear problem, ξ is the interaction phase with the field, canonical momentum Ω has the same meaning as κ in the quasi-linear theory.

Self-consistent description of waves and particles

$$E = -\frac{1}{c} \frac{\partial A}{\partial t} \approx \frac{\omega_0}{c} \operatorname{Re} \left[iA_0(z, r_{\perp})C(t) \exp(-i\omega_0 t) \right] \quad A_0 = \text{mode of a vacuum chamber}$$

$$\frac{\mathrm{d}C}{\mathrm{d}t} = -\frac{2\pi i\omega_0}{c} e^{i\omega_0 t} \int A_0^{\dagger} \cdot \mathbf{j} \, \mathrm{d}^3 \mathbf{r} - \gamma_{\mathrm{d}} C. \qquad \leftarrow \text{Maxwell equations}$$

$$described by the same V_n$$

$$H = H_0 + \frac{e}{mc} \mathbf{A} \cdot \mathbf{p} = H_0 + \operatorname{Re} \left[C(t) \sum_n V_n \exp(\frac{i\xi_{\perp} + in\xi_{\parallel}}{i\xi} - i\omega_0 t) \right]$$

$$\frac{\partial f}{\partial t} + \Omega \frac{\partial f}{\partial \xi} - \operatorname{Re} \left[i V_{\bar{n}} C(t) e^{i\xi - i\omega_0 t} \right] \frac{\partial \Omega}{\partial I_\perp} \frac{\partial f}{\partial \Omega} = \operatorname{St} f$$
$$\frac{\mathrm{d}C}{\mathrm{d}t} = -4\pi^2 i \omega_0 \int V_{\bar{n}}^{\dagger} f_1 \,\mathrm{d}I_\perp \mathrm{d}I_{||} - \gamma_{\mathrm{d}} C.$$

Formally it is equivalent to the electrostatic Berk-Breizman problem \rightarrow saves our efforts!

Simplest Berk-Brezman problem

Inverse non-linear Landau damping changes to "hole & clump" instability when St f and γ_{d} become essential

(a) 2

Berk, Breizman, Pekker, PRL 76 1256 (1996) Berk, Breizman, Petviashvili, Phys. Lett. A 234 213 (1997)

Fig. 3. Particle distribution function with holes and clumps. (a) The spatially averaged distribution as a function of time and $\Omega - \omega_0$. (b) A gray-scale image of the distribution function in phase space at $\gamma_1 t = 120$. White corresponds to the smallest values of f and black the largest values. The original resonance is located in the gray area at the mid-line. The islands, corresponding to holes and clumps, are also gray although they are surrounded by other shades of the ambient phase space fluid.

How to apply the model to real experiments

 Initial unstable distribution function → quasi-linear plateau formed during ECRH

$$F = F_0 \exp\left(-\frac{\mathcal{K}(I_\perp, I_{||})}{T_e}\right) \begin{cases} 1 & \text{for } \gamma < \gamma^* \\ 0 & \text{for } \gamma > \gamma^* \end{cases}$$
$$\gamma_{\rm L} = 4\pi^3 \sigma \omega_0 \int \delta(\Omega - \omega_0) |V_{\bar{n}}|^2 \frac{\partial F}{\partial \mathcal{K}} \, \mathrm{d}\mathcal{K} \, \mathrm{d}\bar{I}_{||}$$

2) Bounce-resonance harmonic

 v_{\perp}/c

- ()								
$\Omega(I_{\perp}, I_{ }) = \omega_0$	n	-30	-32	-34	-36	-38	-40	-42
$\mathcal{K}(I_{\perp}, I_{ }) = 0$	ϵ , keV	380	320	270	235	205	180	160
$\mathcal{E} < \mathcal{E}^*$	$\gamma_{\rm L}, \times 10^{7} {\rm s}^{-1}$ $\tilde{\omega}_{\rm b}/2\pi, {\rm GHz}$	$\frac{12}{0.54}$	7.2 0.50	$\frac{3.6}{0.46}$	$1.5 \\ 0.43$	0.3 0.40	-0.3 0.38	-0.5 0.36
$\gamma_{\rm L} > 0$	$\omega_{\rm c}/2\pi$, GHz $z_{\rm loc}$, cm	$10.8 \\ 2.8$	$10.1 \\ 2.4$	$9.5 \\ 2.0$	9.1 1.8	$\frac{8.7}{1.5}$	$8.4 \\ 1.0$	$8.2 \\ 0.8$
	1007							

3) Wave dissipation $\rightarrow Q$ -factor of the vacuum chamber (adjusted)

- 4) Collision integral for fast electrons \rightarrow background plasma (adjusted)
- 5) Initial wave amplitude \rightarrow thermal equilibrium with hot electrons

Modeling of experimental spectra with BOT code

Nitrogen

Table 3. Physical parameters for BOT simulations.

Parameter	Initial guess	After adjustment
$\gamma_{ m L}$ $\gamma_{ m d}$ $ u_{ m diff}$ $ u_{ m drag}$	$\begin{array}{l} 3.6\times10^{7}~{\rm s}^{-1}\\ 3.45\times10^{7}~{\rm s}^{-1}\\ 5.3\times10^{6}~{\rm s}^{-1}\\ 6.3\times10^{4}~{\rm s}^{-1} \end{array}$	$\begin{array}{l} 7.0\times10^{7}~{\rm s}^{-1}\\ 6.44\times10^{7}~{\rm s}^{-1}\\ 7.8\times10^{6}~{\rm s}^{-1}\\ 9.0\times10^{6}~{\rm s}^{-1} \end{array}$

A G Shalashov, E D Gospodchikov, M E Viktorov // Plasma Phys. Control. Fusion, V.61, N.8, P.085020 (2019)

Argon

BOT code: Lilley M K 2011, code.google.com/p/bump-on-tail

Automatic selection of chirping events

Analysis of the experimental data: the Berk-Breizman model

Frequency change in the wave packet:

$$\delta\omega \approx \frac{16\sqrt{2}}{3\sqrt{3}\pi^2} \gamma_L \sqrt{\gamma_d t} \equiv \sqrt{At} \qquad \Longrightarrow \qquad \gamma_L^2 \gamma_d \approx 5A$$

H. L. Berk, B. N. Breizman, N. V. Petviashvili, Phys. Lett. A 234, 213 (1997).

Instability condition:

$$\gamma_L \ge \gamma_d \qquad \Longrightarrow \qquad \gamma_L = \gamma_d \approx \sqrt[3]{5A}$$

Analysis of the experimental data: the Berk-Breizman model

Analysis of the experimental data: the Berk-Breizman model

 $\delta\omega \approx \sqrt{At}$

$$A = (0.4 - 2) \times 10^{21} \text{ s}^{-3}$$

$$\gamma_{\rm L} = (1 - 2.5) \times 10^7 \, {\rm s}^{-1}$$

Conclusions

- The chirping frequency patterns in the plasma EC emission, which are very similar to those predicted by the Berk-Breizman model, were observed during the plasma decay stage, characterized by a high relative density of the fast electrons
- To explain the features of plasma emission spectra we formulate a self-consistent kinetic equation for the distribution of resonant electrons and an equation for complex amplitudes of unstable modes excited under combined (cyclotron and bounce) resonance in an inhomogeneous plasma
- ➤ We show that the problem of disturbing electromagnetic modes in an inhomogeneous plasma with a mirror magnetic field configuration can be reduced to equations describing a much simpler situation of exciting electrostatic oscillations in a homogeneous plasma under conditions of nonlinear Landau damping, which are described in the well-known Berk-Breizman model
- Under the conditions of our experiment a case may occur where these combined resonances do not overlap
- Similarities to nature phenomena: Earth magnetosphere, solar flares

A G Shalashov, E D Gospodchikov, M E Viktorov. // Plasma Phys. Control. Fusion, V.61, N.8, P.085020 (2019) A G Shalashov, M E Viktorov, D A Mansfeld, S V Golubev // Physics of Plasmas, 24 (2017), P.032111. M. E. Viktorov, A. G. Shalashov, D. A. Mansfeld and S. V. Golubev // EPL, 116 (2016) 55001

Thank you for your attention!

ご清聴ありがとうございました