Max-Planck-Institut für Plasmaphysik

# Effects of the non-perturbative mode structure on energetic particle transport



G. Meng<sup>1\*</sup>, Ph. Lauber<sup>1</sup>, Z.X. Lu<sup>1</sup>, X. Wang<sup>1</sup> Acknowledgement: T. Hayward-Schneider and F. Zonca <sup>1</sup>Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany

## **Motivation**

• The mode distortion can be induced by EP non-perturbative effects [1].



- The non-perturbative EP effects can change the waveparticle interaction, the mode growth rate, the saturation level, in turn, the EP transport changes [2, 3].
- The non-perturbative mode structure can be represented by the "symmetry breaking" in parallel and radial directions [4]. While "symmetry breaking" has been intensively studied in micro-turbulence transport (w/o EPs) due to its effects on intrinsic toroidal rotation, its effects on EP transport are less well understood.

#### **Test particle studies**

Particle energy change after 20 poloidal circles with a fixed mode amplitude  $\delta B/B = 10^{-3}$  ( $\approx$  HAGIS saturation value).



- As predicted, particle energy changes
- significantly at p=2 resonance and s around 0.4.
- Resonance lines are visible in A,B,C,D but can be distorted due to different mode structures.
- A and C are similar; B and D are similar (also see saturation level analyses following).
- B and D, featured with the significant radial propagation in mode structures, are distorted compared with A. 0.4 • For this case, the p=2.5 nonlinear resonance is 0.35  $v_{\parallel}/v_A$ also observed. At the p=2.5, the resonance 0.25 structure is due to the coupling of the two 0.25 0.25 primary resonance p=2 and p=3. • Resonance islands are narrow at p=3. 0.15 0.4 0.2 0.4 0.6 0.8 p=2.5 p=3 p=2  $P_{\mu}/q\psi_{w}$  $P/q\psi_w$  $P_{c}/q\psi_{w}$

# Mode structure with Symm. Breaking

EPs induce radial & up-down mode structure symmetry breaking.  $\rightarrow$ The radial mode structure  $A(s) = \exp\{-\sigma(s - s_0)^2\}$  with complex parameters  $\sigma$  and  $s_0$  are used [4]. s : radial coordinate



- RSAE mode for AUG #31213, f=133 kHz, n=2, m=4 (LIGKA results).
- Case A is fitted mode structure using LIGKA [6] results.
- Cases B, C, D mimic experiment and HMGC simulation results [7].
- Base case A, without symmetry breaking.

#### Linear resonance

• HAGIS result: linear resonances  $(n\langle \omega_{\zeta} \rangle - p\langle \omega_{\theta} \rangle = \omega$ , red lines,

### **Delta f studies**

**EP** Initial distribution



Energy distribution



Pitch angle **isotropic** distribution.

with  $E_0 = 93 \text{ keV}, E_c = 37.21 \text{ keV}, \Delta E = 149.9 \text{ keV}$ 

p=2, 3) in phase space for a 133 kHz n=2 mode in the circular equilibrium matched to AUG #31213. Color bar represents  $[n\langle\omega_{\zeta}\rangle - \omega]/\langle\omega_{\theta}\rangle - p$ . s is  $\sqrt{\psi}$ .  $v_{\parallel}$  is parallel velocity;  $v_A$  is Alfvén velocity. Particle initial  $v_{\perp}=0$ ,  $v_{\parallel}/v=1$ , initial  $\theta = 0$ ,  $\zeta = 0$ .

- $v_{\parallel}/v_A$ =0.15 corresponds to E=16 keV
- $v_{\parallel}/v_A$ =0.2 corresponds to E=28 keV.
- NBI birth energy: 93 keV.
- In this range, for co-passing particles p=2 resonance dominates.



#### Conclusions

- LIGKA-HAGIS [5,6] coupling scheme has been applied to the studies of EP-wave interaction and transport analyses using the analytical mode structure with symmetry breaking properties [4] according to experimental and simulation observations [7,8].
- Analyses based on AUG parameters show that nonperturbative mode structure can be important for EP transport modelling.
- Particle resonance pattern changes due to the mode structure symmetry breaking
  - Mode structure symmetry breaking leads to distortion of wave-particle resonance island structures; the mode radial propagation plays an important role. This provides new features in addition to the analyses using perturbative mode structures [9].

- $f(\psi) = 1/[1 + exp\left(\frac{\psi \psi_0}{\delta \psi}\right)]$ , with  $\psi_0 = 0.16, \delta \psi = 0.2$ .
- EP density at magnetic axis  $n(0) = 9.163E+17 [1/m^3]$



Linear growth rate  $\gamma_L$  is fitted during the first 1000 steps; averaged saturation level  $A_{sat}$  during 10000-15000 steps (t=3.77-5.65 ms)

- Base case A:  $\gamma_L / \omega = 0.98\%$ ,  $A_{sat}$  is  $4.2 \times 10^{-3}$ .
- Compare B with A: due to radial propagation, the linear growth rate & saturation of B decrease by ~5% & 20% respectively.
- Case D:  $A_{sat}$  decreases, but  $\gamma_L$  is similar to A. Synergistic effect of  $Im\{\sigma\} \& Im\{s_0\}$ ?
- Case C:  $\gamma$  and  $A_{sat}$  slightly change.

#### $\delta f$ and particle redistribution



- Alfvén mode leads to the flattening of density and energy profiles ( $\delta n, \delta E < 0$  for s < 0.5;  $\delta n, \delta E > 0$  for s > 0.5)
- Perturbative mode structures (B,C,D) lead to changes in particle and energy transport with  $\delta n, \delta E$  deviating by ~10%
- Parallel velocity profile changes significantly due to the non-perturbative mode structure symmetry breaking. In the inner region (s < c0.5),  $u_{\parallel}$  can change its direction (rotation) reversal)
- All figures are averaged over t=3.77-5.65 ms

- With mode symmetry breaking effects:
  - Mode linear growth rate can change by 10% and saturation level can change by 20%.
  - EP density and energy transport can change by 10%.
  - EP parallel velocity  $u_{\parallel}$  can change significantly,  $u_{\parallel}$ reversal in the inner region is observed when varying the mode structures.

except particle and heat flux averaged over t=0-3.77 ms.



Toroidal rotation reversal of thermal ions has been widely observed (w/o EP) [Rice et al, Nucl. Fusion, 51 (8), 083005 (2011)] EP effects on thermal ion rotation needs to be studied for burning plasmas



[1] Tobias PRL 2011 [2] Zonca, NF 2005 [3] Chen RMP 2016 [4] Lu NF 2018 [5] Pinches CPC 1998 [6] Lauber JCP 2007 [7] Briguglio POP 1995 [8] Z. Wang PRL 2013 [9] Meng NF 2018

\*guo.meng@ipp.mpg.de IAEA Technical meeting, Shizuoka, Japan, 2019 Sep 3~6



This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

