First experience with the W7-X Fast Interlock System

Reinhard Vilbrandt on behalf of the W7-X-Team
Max Planck Institute for Plasma Physics, Greifswald, Germany
First experience with the W7-X Fast Interlock System

Motivation

• The first practical experiences with the central Fast Interlock system (cFIS) have been gained during the operation phase 1.2b in summer 2018
 • initial cooled divertor, max. 200 MJ heating input, max. pulse length 100 s
 • proof of
 • a satisfactory reaction, scalability, operability
 • assessment of
 • the response times resulting from various safety-relevant plasma diagnostics.
 • definition of
 • improvement and upgrade of the FIS to protect components in the plasma vessel in the future (active cooled divertor, max. heating power up to 14 MW)
First experience with the W7-X Fast Interlock System

Main results

- The response time of the cFIS is sufficient.
- The fast shut-off of the heating systems within 5 µs worked reliably.
- All interventions by the cFIS were justified. False alarms were not observed.
- Diagnostics for ECRH stray radiation, diamagnetic energy, and plasma density worked very reliable.

example

radiation from the plasma gets too high at 6 sec.
→ the electron temperature drops (but ECE was not available)
→ fast drop of diamagnetic energy
→ ECRH shut-off by cFIS
First experience with the W7-X Fast Interlock System

Improvements

• Implementation of the ECE-diagnostic to the cFIS. (worked stand-alone properly)

• Elimination of some temperature drift and signal artefacts of the diamagnetic loops.

• Add real-time recording of data and events in the cFIS for analysis purposes. (e.g. to detect jitters in signal generation)

• Removal of some timing constraints in the cFIS (implemented as a precaution into the first version)

→ aiming at a strict focus on safety-relevant parameters
First experience with the W7-X Fast Interlock System

Upgrade

- Implementation of Divertor Thermography to avoid overload of plasma facing components.
- Implementation of the new Ion Cyclotron Resonance Heating (ICRH) system into the cFIS.
- The increasing number of heating systems and safety-relevant diagnostics demands enhancement of the high speed core-system and communication.
First experience with the W7-X Fast Interlock System

Thank you for your attention

Poster - Board P/3-4 / 486

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.