Efficient MHD equilibrium solver for Control Oriented Transport models

Pablo Garcia Martinez1,2, Pablo Montes3 and Ricardo Farengo3,4

1CONICET, CCT-Patagonia Norte, Bariloche, Argentina
2Universidad de Rio Negro, Sede Andina, Bariloche, Argentina
3Instituto Balseiro, Centro Atomico Bariloche, Bariloche, Argentina
4CNEA, Centro Atomico Bariloche, Bariloche, Argentina

in collaboration with

Eugenio Schuster, Lehigh University, Bethlehem, PA, USA
Outline

1 Motivation: Physics-based-models for current profile control
2 Magnetic Diffusion Equation & Control Oriented Transport
3 Equilibrium constrain: the Grad-Shafranov equation
4 A q-solver algorithm
5 Convergence & Performance
6 Summary and perspective
Plasma control: Control categories and physical actuators in ITER

Control categories
- Plasma equilibrium
- Plasma current
- Vertical stability
- Burn state
- Divertor
- Current profile
- MHD instabilities
- Fast particles
- Error field
- Disruption mitigation

Actuators
- PF coils
- CS coils
- ECCD
- ECRH, ICRH
- NBI
- VS3 coils
- RMP coils
Elements of control process

Motivation
Physics-based-models for current plasma profile control
Magnetic Diffusion Equation (MDE)

\[
\frac{\partial \psi}{\partial t} = \frac{\eta(T_e)}{\mu_0 \rho_b^2 \hat{F}} \frac{1}{\hat{\rho}} \frac{\partial}{\partial \hat{\rho}} \left(\hat{\rho} \hat{F} \hat{G} \hat{H} \frac{\partial \psi}{\partial \hat{\rho}} \right) + R_0 \hat{H} \eta(T_e) \frac{\langle \mathbf{j}_{NI} \cdot \mathbf{B} \rangle}{B_{\phi,0}},
\]

\[
\left. \frac{\partial \psi}{\partial \hat{\rho}} \right|_{\hat{\rho}=0} = 0, \quad \left. \frac{\partial \psi}{\partial \hat{\rho}} \right|_{\hat{\rho}=1} = -\frac{\mu_0}{2\pi} \frac{R_0}{\hat{G}} \left. \hat{H} \right|_{\hat{\rho}=1} \left. I(t) \right|_{\hat{\rho}=1},
\]

where

\[
\hat{F}(\hat{\rho}) = \frac{R_0 B_{\phi,0}}{RB_{\phi}}, \quad \hat{G}(\hat{\rho}) = \left\langle \frac{R_0^2}{R^2} |\nabla \rho|^2 \right\rangle, \quad \hat{H}(\hat{\rho}) = \frac{\hat{F}}{\left\langle \frac{R_0^2}{R^2} \right\rangle},
\]

are “magnetic geometric” factors determined by plasma equilibrium.

In current implementations, these profiles are externally imposed, and typically left invariant.

\(q \) profile control and good discharge reproducibility have been achieved with this simplification [e.g. Schuster NF 57 116026 (2017), Felici NF 58 096006 (2018)].

However, a self-consistent description would allow more general and robust control design.
Coupling MDE with the Grad-Shafranov equation (GSE)

Simplified staggered scheme for Control Oriented Transport models

\[
\psi_i(\rho) - \frac{1}{2}(R, Z) \psi_i + \frac{1}{2}(R, Z) \psi_i + 1(\rho) = n_i(\rho), T_i(\rho), n_i + 1(\rho), T_i + 1(\rho) \]

\[
q_i(\rho), p_i(\rho), q_i, p_i, \{F, G, H\}, \{\hat{F}, \hat{G}, \hat{H}\} \]

\[
\{j_{aux}, j_{bs}\} \text{ (non-inductive currents)}
\]

Particle & power sources

Mass & energy transport

GSE
Plasma Equilibrium (prescribed boundary)

MDE
Magnetic Flux transport

\[
\psi_{i-1/2}(R, Z) \rightarrow \psi_i(\rho) \rightarrow \psi_{i+1/2}(R, Z)
\]

\[
\{F, G, H\} \rightarrow \{\hat{F}, \hat{G}, \hat{H}\}
\]

\[
\{j_{aux}, j_{bs}\}
\]

Pablo Garcia Martinez
Efficient MHD equilibrium solver
12th IAEA CODAC 2019 6 / 14
GSE as a non-linear eigenvalue problem

\[\Delta^* \Psi = -\mu_0 R^2 \frac{dP}{d\Psi} - \frac{1}{2} \frac{dF^2}{d\Psi}, \quad F = RB_\phi \]

Using the normalization, \(\psi = \Psi / \Psi_0 \), \(\Psi_0 \) poloidal flux function on axis, and defining \(f(\psi) = F(\Psi) \), \(p(\psi) = P(\Psi) \)

the (non-linear) eigenvalue nature of the equation is revealed
[LoDestro PoP 1 90 (1994)]

\[\begin{cases}
-\Delta^* \psi = \frac{1}{\Psi_0^2} \left(R^2 \frac{dp}{d\psi} + \frac{1}{2} \frac{df^2}{d\psi} \right) & \text{in } \Omega \\
\psi|_{\partial\Omega} = 0 & \text{0} \leq \psi \leq 1
\end{cases} \]

Methods to solve this problem are available e.g. [Pataki JCP 243 28 (2013)]

However, they require specification of \(p(\psi), f(\psi) \) instead of \(p(\rho), q(\rho) \) !!!
q-solver algorithm (eulerian description)

(0) A good seed: the linear eigenvalue solution

\[
\begin{align*}
- \Delta^* \psi &= \left(R^2 \mathcal{L}_p + \mathcal{L}_f \right) \psi \quad \text{in } \Omega \\
\psi \big|_{\partial \Omega} &= 0
\end{align*}
\]

($\mathcal{L}_p, \mathcal{L}_f$) are chosen to match prescribed (I_p, β) $\rightarrow \Psi^{k=0}(R, Z)$

(1) Estimation of $\text{RHS}(\Psi_0, \frac{dp}{d\psi}, \frac{df^2}{d\psi})^{k+1}$ from $(\Psi^k, q(\rho), \frac{dp}{d\rho})$

(2) A ’standard’ non-linear GSE solver, to update the equilibrium: $\text{RHS}^{k+1} \rightarrow \Psi^{k+1}(R, Z)$

(involves “internal” Newton iterations)

Iterate (1)-(2) over k until target q is reached (“external” iteration)
External iterations, an example

q profiles after two iterations

q profiles after two iterations

$p = 0$ (seed)

$k = 6$

Target: $#147626$, $t=5s$

$k = 1$

$k = 2$

$k = 0$
Convergence and performance I

- Total Newton iterations at $k=5 = 26$

Graphs showing the relative error and the number of Newton iterations for different values of k.
RHS \(\Psi_0, \frac{dp}{d\psi}, \frac{df^2}{d\psi} \) \(k+1 \)
estimation from \(\Psi^k(R, Z), q(\rho) \) and \(p(\rho) \)

\[
\Psi_0 = \int_0^1 \frac{\Phi_b^2 \rho}{\pi q} \, d\rho, \quad \frac{\partial \psi}{\partial \rho} = \frac{\Phi_b^2 \rho}{\pi \Psi_0 q}, \quad \frac{dp}{d\rho} = \frac{dp}{d\psi} \frac{\partial \psi}{\partial \rho}, \quad V_\rho = \frac{\partial V}{\partial \rho}
\]

\[
\langle GSE \rangle_k \rightarrow \frac{\Psi_0^2}{V_\rho} \frac{\partial}{\partial \rho} \left[\left\langle \frac{|\nabla \rho|^2}{R^2} \right\rangle V_\rho \frac{\partial \psi}{\partial \rho} \right] = -\frac{dp}{d\psi} - \frac{\langle R^{-2} \rangle}{2} \frac{df^2}{d\psi},
\]

\[
\langle GSE \rangle_{k+1} \rightarrow \frac{\Psi_0^2}{V_\rho} \frac{\partial}{\partial \rho} \left[\left\langle \frac{|\nabla \rho|^2}{R^2} \right\rangle V_\rho \frac{\partial \psi}{\partial \rho} \right] = -\frac{dp}{d\psi} - \frac{\langle R^{-2} \rangle}{2} \frac{df^2}{d\psi},
\]

\[
\frac{df^2}{d\psi} = \alpha \frac{df^2}{d\psi} - C\frac{R_0}{\pi} \frac{I(\rho)}{\rho} \frac{\partial \alpha}{\partial \rho} - \frac{2}{\langle R^{-2} \rangle} \left(\frac{dp}{d\psi} - \alpha \frac{dp}{d\psi} \right), \quad \alpha = \frac{\Psi_0 q}{\Psi_0 q}
\]
Convergence and performance II

\[F = R_0 B \phi / \rho \delta q / q < 1\% \]

1 Ext iter

1 Ext iter

\[\text{Total Newton Iterations} = 1000 \]

\[\text{Total Newton Iterations} = 650 \]

\[\text{Relative Error} \]

\[\text{t (s)} \]
Summary and perspective

- A new algorithm to include the equilibrium condition in control oriented transport simulations was developed, which is robust and reasonable efficient.

- The iterative algorithm has a physically intuitive basis and could be applied straightforwardly to existing eulerian GSE solvers and other applications.

- Moreover, the same principle can be extended to use different input data such as the radial dependence of the pitch-angle.

- Improvement of the efficiency in cases with significant changes in magnetic geometry must be addressed.

- Inclusion of the effect of the coils on the shape of the plasma (free boundary problem) in an appropriate manner is being studied.