Advances and Challenges in KSTAR plasma control toward long-pulse, high-performance experiments

National Fusion Research Institute, Daejeon, Korea
hahn76@nfri.re.kr

General Atomics, San Diego, USA

D. Mueller, M.D. Boyer, K.Erickson
Princeton Plasma Physics Lab, Princeton, USA

G.W. Shin
University of Science and Technology (UST), Daejeon, Korea
Plasma control system (PCS) in KSTAR

- An integrated set of controllers to create, control and shut down the plasma
 - Crucial to KSTAR operations / Main control tool for experiments
 - Another successful adaptation of DIII-D PCS software (2005-present)
 - First operations at 2007-2008 [1], upgrade to 64-bit systems in 2016 [2,3]
 - Development done thru US-KSTAR collaborations & domestic researchers

KSTAR PCS

- Infrastructure
- Common functions

SW management: GitLab / ssh-git

Dedicated DAQ, drivers, Network, EPICS IOC

“Installation-specific” for KSTAR:
PCS/KSTAR, emc/KSTAR, Toksys/KSTAR

Ownership to KSTAR
Codes & algorithm only applied to KSTAR
Access granted to KSTAR domestic / allowed collaborators

Enhancement of computing capability by migrating to 64bit + MRG-realtime

- **New Intel 64bit RT system** [3]
 - Modern Intel Xeon architecture + CERN MRG realtime
 - Reinforce feature of automated RT code generation (real-time Feedforward [4], ONFR [5])
 - similar to planned ITER control implementations

- **Catch up with the extending requirements by the physics experiments proposed to KSTAR**
 - Covering up to 20 kHz cycle
 - Single box + Up to 9 real time processes
 - 36 different actuators (gas, heating, coils)
 - +200 analog inputs (AI)
 - +600 digital I/O through Reflective Memory / DO modules
 - New interface for fast interlock

- The rtEFIT boundary accuracy & speed enhanced by new system
 - within ~1 cm errors + more iterations allowed

Dedicated RT multichannel diagnostics operating for PCS

<table>
<thead>
<tr>
<th>category</th>
<th>Status (2018)</th>
<th># of channels</th>
<th>Plan 2019-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axisymmetric magnetic diag. (MD)</td>
<td>RC, VCM, FL, MP, DL, LV, IVC</td>
<td>166</td>
<td>No HW installation but continues enhancements for real-time EFIT</td>
</tr>
<tr>
<td>3D MD</td>
<td>MPZ at passive plates Mirnov with bandpass</td>
<td>24</td>
<td>+ Mirnov with higher sampling [up to 100 kHz]</td>
</tr>
<tr>
<td>Kinetic / optical</td>
<td>MMWI or TCI (selectable)</td>
<td>2</td>
<td>+ MSE for adding RT(MSE)EFIT [12x2 ch]</td>
</tr>
<tr>
<td>Coil control</td>
<td>TF, PF, IVCC</td>
<td>200 (RFM)</td>
<td>+ add dedicated coil DAQ for safety</td>
</tr>
<tr>
<td>Etc.</td>
<td>Fast interlock interfaces</td>
<td>6</td>
<td>+ additional disruption detection signals (TBD)</td>
</tr>
</tbody>
</table>
Integration of various real-time components for sophisticated plasma experiments

Magnetic control
- Plasma current (I_p)
- Plasma position
- Shape (isoflux)
- Vertical stabilization

Plasma Control System (PCS)
- Line density (n_e)
- Plasma beta
- MHD
- Profile control
- Non-axisymmetric

Kinetic control
- D2 fueling: G, J, O, D
- EC power & poloidal mirror angle (2)
- Diag. fueling (Ar)
- SMBI, MGI
- Impurity seeding (Ne, N2, Kr)
- IVC (1)
- IPS / RMP / IRC (10)

Actuator Quality controlled by component-based commissioning procedure
- PF (11)
- Magnets (22)
- Particles (10)
- Heating (8)
- NB power modulation (6 ion sources)
Simulator environment for axisymmetric magnetic control enabled more cost-effective operations

- Based on nonrigid response model [6], reflecting shape deformation
 - Validated for the vacuum, PF actuators and shape controls [7]
- Development by MATLAB/Simulink + Automatic code generation by Simulink Coder
 - Can switch/verify directly from simulation to real experiment

Extension of operational space made by improved magnetic controls

Access to high-qmin & high-Ip regime utilizing early-diverted, low-li shots

Early-diverting strategy enables diverted shape at t~0.45s:
- reduction of li
- early beam injection
- optimal flux consumption (important for long pulse)

Challenge for SC tokamak
- slow PF coils, different freq responses
- need stronger VS
- accumulation of control errors to integral gains
- changes on magnetics quality

New pulse length record of ~90s by high-βp H-mode discharges (2018)

#15433 : typical H-mode
#20812 : new early diverted scenario
ITER shape access made easy by advanced magnetic control scheme: Improved VS + real-time Feedforward + MIMO Xpt controls

Improved vertical stabilizations (VS) enable $\kappa = 2.16$ [8,9]

Reproducible ITER shape access at $I_p = 850$ kA, $B_T = 1.8$T (2017-2018)

Kinetic controls evolving for density / heating / MHD

RT Poloidal beta control [10]

Density feedbacks [11,12] (feat. PZT/SMBI)

Versatile controls for 3D magnetic perturbation coils [13] (RMP-ELM, RWM, NRMP)

Kinetic controls evolving for density / heating / MHD

Search & suppress demonstration \(^{[14]}\) (2015) using \(n=1\) TM amplitude detector

RT EC mirror controls for TM suppression

S&S triggered here by \(n=1\) amplitude detector

q-surface tracking experimentally tested

Mirror position was tracking to \(q=2.5\) surface on \(R_{\text{res}} = 1.80\) m

Categorized fast interlock scheme by “severity” provides ways to plan complex sequential actions

Severity levels determined by **plasma current (Ip) controllability:**
- Ip survivable : low → continue discharge
- Ip controllable to rampdown : med → soft stop
- Ip uncontrollable : high → hard stop

Compatible with upcoming ONFR [5] design
Connected with the KSTAR Fast Interlock System (FIS)[15]

[15] Myungkyu Kim et al., this conference P/1-1
Categorized fast interlock scheme by “severity” provides ways to plan complex sequential actions.

Example of sequential stop [16]

- **NB3 armor fault** triggered the forced landing[*], \(\text{Ip rampdown starts (LV3}_2, \text{ Soft Stop) } \)

- **“Beam-off” action** was added for avoiding shine-through at \(\text{Ip} < 200 \text{ kA} \)

- **Loss of NB power** leads to “Ip min fault” (LV3_1, Hard Stop)

The path to successful fusion belongs to control advances

- Extension to Mega-Amp access
- Long pulse with high performance
- Access to scaled ITER baseline
- New RT functions integration
The path to successful fusion belongs to control advances

- Improved Vertical stabilization
- MIMO shape control
- Realtime Feedforward
- Off-Normal Fault Response
- Automated Disruption avoidance
- Extension to Mega-Amp access
- Long pulse with high performance
- Access to scaled ITER baseline
- New RT functions integration
- Particle balance controls
- ELM crash controls
- beta control
- Profile controls
- MHD control
- Automation by Machine Learning

Startup improvement

Automated Disruption avoidance
New sophisticated ideas recently tested by standalone systems for future integrated control advances

Feasibility experiment for Te profile feedback using NB / ECH [17]

Automation of real-time detection for L→H [18,19] thru Machine Learning:
: offline test accuracy above 90%

[19] G.W. Shin, this conference (P/1-4)
Developments ongoing toward more sophisticated controls for achieving advanced operational regime

- **New real-time functions planned**
 - Integrate RT controls for 6 NB sources / 6 gyrotrons / Helicon
 - Fast interlock / ONFR improvements for disruption-free operations
 - Enable multibox extension for high-freq diagnostics
 - Improve adaptive shape control for easier access of ISS/IBS
 - Control simulator (simserver) improvement with NB / VDE responses

- **New real-time diagnostics technology investigation ongoing**
 - Technology dev for real-time Profile diagnostics (ECE / TS \(^{[20]}\) / MSE \(^{[21]}\))
 - Collaboration efforts on high-freq computer system for real-time MHD analysis \(^{[22]}\)

\(^{[20]}\) Seung-Ju Lee et al., this conference, O/8-2
\(^{[21]}\) Hanmin Wi et al., this conference, P/4-2
\(^{[22]}\) Keith Erickson et al, this conference, O/4-3