Methodology to standardize the development of FPGA-based intelligent DAQ and processing systems on heterogeneous platforms using OpenCL

M. Astrain1, M. Ruiz1, S. Esquembri1, A. Carpeño1, E. Barrera1, J. Vega2

1Instrumentation and Applied Acoustic Research Group, Universidad Politécnica de Madrid, Madrid, Spain

2Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain

miguel.astrain@i2a2.upm.es
• Context
• System Architecture Example
• OpenCL standard
• Development cycle
• Results
• Conclusions
Advantages of Data Acquisition (DAQ) systems based on FPGAs

+ Flexibility to modify the design
+ Low latency
+ Deterministic behavior
+ High-performance processing
+ Parallelization

But developing for FPGA is complex and time consuming (expensive ...)

miguel.astrain@i2a2.upm.es
Why is it expensive to develop for FPGAs

Desig Using LabVIEW/FFPA

Only Products from One Manufacturer

miguel.astrain@i2a2.upm.es
IRIO-OpenCL

Control System
- NDS-EPICS
- NDS-CORE

User customization
- IRIO
- IRIO-OpenCL

NI Linux Driver
- OpenCL RTE

Main control, Other systems, etc

Application independent
- Application dependant
- Hardware & device drivers
- Software

Desing Using OpenCL(80%)
HDL(20%)

Products from multiple Manufacturers

miguel.astrain@i2a2.upm.es
• PC + PCIe + MTCA + AMC + (PROCESSING) + (I/O)
High level language + COMPUTING MODEL

- A host and multiple devices (CPU, GPU, FPGA).
- Computation is divided into functions called Kernels.
- There is one or several queues that send the Kernels to execute concurrently.
- Memory organized in buffers/images and transfers are explicit.
- Parallelization is a big focus.
OpenCL: Kernels

- **Short**: The part of OPENCL that goes into the FPGA and is allocated in the FPGA in **partial reconfigurable partition**.

- Kernels have access to all device memory layers.

- Key to performance is optimizing this memory usage.

- Parallelization is achieved in the form of a pipeline for FPGA.

Diagram

- **Host** to **Intel RTE**
- **BSP**
 - **K_DAQ**
 - **K_GEN**
 - **K_TIMING**
 - **K_NFM**

Contact

miguel.astrain@i2a2.upm.es
OpenCL: BSP

- **Short:** The part of OPENCL that goes into the FPGA and is **FIXED**.
- Manages DDR memory.
- It interfaces with the host
- JESD204B interface
- Requires HDL to modify (usually given)
OpenCL: Host

- **Short:** The part of OPENCL that goes into the C++ drivers.
- **Host** sends **commands** and can set Global Memory (**DDR**) (SLOW!)
- Critical processes can be organized with a chain of pipes (**HDL=AXI ST**)
- Data can be gathered from **I/O pins**, but kernels are **queued** from host.

Slide 11

miguel.astrain@i2a2.upm.es
Three main scenarios for a new application:

1. New algorithm
2. FMC module
3. AMC + FPGA
Results

• Implementation: **more on ID 494 !!**

• Basic kernels FPGA resource utilization

<table>
<thead>
<tr>
<th>Kernel Name</th>
<th>ALUTs</th>
<th>FFS</th>
<th>RAMs</th>
<th>DSPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>consumer</td>
<td>1804</td>
<td>5113</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>manager</td>
<td>470</td>
<td>454</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>producer</td>
<td>1155</td>
<td>2872</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>streamingToPipe</td>
<td>635</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kernel Subtotal</td>
<td>4134</td>
<td>8839</td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td>Channel Resources</td>
<td>164</td>
<td>648</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Global Interconnect</td>
<td>1244</td>
<td>2870</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Board Interface</td>
<td>69809</td>
<td>133609</td>
<td>182</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>72402 (17%)</td>
<td>146024 (17%)</td>
<td>250 (13%)</td>
<td>2 (0%)</td>
</tr>
<tr>
<td>Available</td>
<td>436560</td>
<td>873120</td>
<td>1049</td>
<td>1687</td>
</tr>
</tbody>
</table>

Functionality:
- ✓ DAQ
- ✓ WFG
- ✓ Processing
- ✓ Routing

Under evaluation:
- ○ Timing
- ○ Triggering
- ○ Routing

• Totally integrated in EPICS using NDS

• Tested in CODAC CORE SYSTEM 6.0
Results

• Working example: fission chamber neutron flux measurement.

• Why this example:
 • The measurements benefit from high sampling rates.
 • High data rate but simple operations (floating point).
 • Logic inside the FPGA can classify different pulses
 • Parallelization enables on-line comparison of different algorithms making it and intelligent system.
 • Alternatively other algorithms based in machine learning techniques can be executed in parallel.
Conclusions

• DAQ combined with OpenCL reduces development of high-performance processing.
• The DAQ and processing systems developed with OpenCL are less manufacturer dependent.
• OpenCL enables C-like development of FPGA with lots of OpenCL algorithms examples.
• OpenCL handles data transfers and device interface, hardware abstraction.
• Combined with NDSv3 a modular solution was developed, abstracted from the control system. **IRIO-OpenCL**
• You only need to do the algorithm.
Future Work

• Future work:
 • Implementation of Machine Learning Applications using machine learning and Deep Learning Tools*.
 • Expand IRIO-OpenCL functionalities
 • Looking for more use cases (possible collaborations) using IRIO-OpenCL -> Contact us!

* Dr Jesus Vega (484. Automatic recognition of plasma relevant events: implications for ITER) 14 may. 2019 9:20
Acknowledgements

This work was supported in part by the Spanish Ministry of Economy and Competitiveness, Projects Nº ENE2015-64914-C3-3-R and Madrid regional government (YEI fund), Grant Nº PEJD-2018-PRE/TIC-8571.

The Intel® FPGA SDK for OpenCL™ is based on a published Khronos Specification. Altera, Arria, Intel, the Intel logo, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of the Khronos Group™. *Other names and brands may be claimed as the property of others.

miguel.astrain@i2a2.upm.es
Thank You! Questions?
asynArrayInt8
asynFloat64
<reason>DAQ.CH1
NDS-Core and NDS-EPICS Libraries
asynDriver ...
CONVERTERMUX D/A
CONVERTER
HW Function:
Health Monitoring
Temp Power
NDS-CORE
FlexRIO+NI5761
Results

• OpenCL tools profiler screen

• Graphs