EAST research activities on control and data toward CFETR

B.J. Xiao1,2, F. Wang1, B. Shen1, Z.P. Luo1, Q.P. Yuan1, Y. Huang1, K. Wu1, Y. Guo1, Y.H. Wang1, S.L. Chen1, X.Y. Sun1, R.R. Zhang1, G. Calabrò3, F. Crisanti3, R. Albanese4, R. Ambrosino4, G. De Tommasi4, A. Pironti4, F. Villone4, L. Barbato4, D. Eldon5, H.Y. Guo5, D.A. Humphreys5

1ASIPP(China), 2USTC(China), 3ENEAI(Italy), 4CREATE(IItaly), 5General Atomics(USA)

bjxiao@ipp.ac.cn
Contents

• Introduction to CFETR Engineering design and R&D
• Data management and collaboration network for CFETR design
• CODAC and PCS concept for CFETR
• EAST plasma control for CFETR
 – Magnetic control: Z, MIMO, advanced shape,
 – Heat load control: radiation, detachment, QSF
 – Kinetic control: profile, beta, Vloop
• Summary
Main Parameters

- **R**: 7.2
- **a**: 2.2m
- **Bt**: 6.5T
- **CS magnet**: ≥ 480 VS
- **Ip**: 6-14MA

Main Features:

- More reliable Plasma targets
- DEMO validation
- Tritium sustain
- Availability: 50%
- Hybrid (30% ohmic), 480VS
- ~ 8 hours for 12MA, days for 6-10MA

Table: Main Parameters

<table>
<thead>
<tr>
<th></th>
<th>B.1 100MW HB</th>
<th>B.2 200MW HB</th>
<th>B.2 500MW HB</th>
<th>B.3 1GW HB</th>
<th>B.4 DEMO level HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pf</td>
<td>114</td>
<td>250</td>
<td>558</td>
<td>1128</td>
<td>2192</td>
</tr>
<tr>
<td>Pinternal</td>
<td>190</td>
<td>196</td>
<td>202</td>
<td>222</td>
<td>75</td>
</tr>
<tr>
<td>Qplant</td>
<td>0.46</td>
<td>0.75</td>
<td>1.40</td>
<td>2.41</td>
<td>12.96</td>
</tr>
<tr>
<td>Qplasma</td>
<td>1.54</td>
<td>3.35</td>
<td>7.65</td>
<td>15.30</td>
<td>795.16</td>
</tr>
<tr>
<td>Pnetelec</td>
<td>-103</td>
<td>-49</td>
<td>80</td>
<td>312</td>
<td>891</td>
</tr>
<tr>
<td>Pn/Awall</td>
<td>0.12</td>
<td>0.25</td>
<td>0.57</td>
<td>1.15</td>
<td>2.23</td>
</tr>
<tr>
<td>BetaT</td>
<td>0.006</td>
<td>0.009</td>
<td>0.014</td>
<td>0.019</td>
<td>0.029</td>
</tr>
<tr>
<td>BetaN</td>
<td>1.00</td>
<td>1.20</td>
<td>1.50</td>
<td>2.00</td>
<td>3.0</td>
</tr>
<tr>
<td>fbs</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.50</td>
<td>0.75</td>
</tr>
<tr>
<td>HITER98Y2</td>
<td>1.01</td>
<td>1.09</td>
<td>1.18</td>
<td>1.19</td>
<td>1.54</td>
</tr>
<tr>
<td>fohm</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.24</td>
</tr>
<tr>
<td>Pcd</td>
<td>74</td>
<td>74</td>
<td>73</td>
<td>74</td>
<td>3</td>
</tr>
<tr>
<td>Ip</td>
<td>8.61</td>
<td>10.34</td>
<td>12.92</td>
<td>13.78</td>
<td>13.78</td>
</tr>
<tr>
<td>Bo</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Ti(0)/Te(0)</td>
<td>13</td>
<td>17</td>
<td>24</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>n(0)</td>
<td>0.67</td>
<td>0.74</td>
<td>0.82</td>
<td>1.16</td>
<td>1.23</td>
</tr>
<tr>
<td>nbar/nGR</td>
<td>0.79</td>
<td>0.72</td>
<td>0.64</td>
<td>0.85</td>
<td>0.90</td>
</tr>
<tr>
<td>Zeff</td>
<td>2.45</td>
<td>2.45</td>
<td>2.45</td>
<td>2.45</td>
<td>2.45</td>
</tr>
<tr>
<td>P/R</td>
<td>7.58</td>
<td>9.33</td>
<td>12.63</td>
<td>19.11</td>
<td>22.97</td>
</tr>
<tr>
<td>q95_iter</td>
<td>8.87</td>
<td>7.39</td>
<td>5.91</td>
<td>5.54</td>
<td>5.54</td>
</tr>
</tbody>
</table>
CFETR Main Challenges

- Burning Plasma (Q = 10-30, Q > 30) for DEMO
- Steady-state Operation
- Particle and Heat removal
- T breeding and self-sustainment
- Plasma wall interaction
- Remote maintenance
- Materials
- Safety and license
Main CFETR R&Ds in ASIPP start @2019

SC Magnets R&D

- **SC Test**
 Material/ Conductor/Magnet
- **CFETR Magnets**
 - 1 1:1 TF Coil
 - CS Model Coil
 - Prototype CS insert with high temperature SC conductor
- **Integrated Test Facility**

R&D on Main & Divertor

- **Material Test**
 - Φ 10 cm , SS with 10^{24}/s 10MW/m²
- **Heating and CD**
 - NBI+ECRH+RF+LH,
- Component Test (Full Size)
 - Thermal-hydraulic, EM, Plasma
- **Assemble and Maintainance**
 - Remote Handling
- **Experiments on EAST**
 - EAST Lower Divertor

Toward CFETR Magnets (TF, CS, PF (ITER PF6))

Toward CFETR, Divertor and Heating & CD Key Tech.
Future R&D Area (40 hectares)
Data Management and Collaboration Network for CFETR Engineering Design

- **Main data during CFETR R&D phase**
 - 3D Models / Components ~ One Million
 - Design Documents / Reports ~ 100 Thousands
 - User Data ~ 1000

- **A data management framework has been designed to manage all the data for CFETR design:**
 - 3D Models design platform
 - Collaboration design network
 - Design documents management
 - User authentication & authorization
3D Models Design Platform

- The whole platform is constructed based on VPM and CATIA.
- VPM - Virtual Product Management, designers can be connected through CATIA software into this platform, and work together through collaboration network connection.
Collaboration Design Network

• Based on WAN Optimization Controller (WOC) Network
 – Virtual Private Network (VPN): To create a safe and encrypted connection over a less secure network (current phase 100Mbps)
 – WAN Optimization: Data deduplication
 – Secure Data Transfer: File Transfer Encryption
A web-based document management system with powerful version control and access management has been developed for CFETR design documents.

- 20 institutes & universities
- 450 user accounts
- 120 approved groups
CFETR CODAC & PCS R&D Started
Future plan for CFETR CODAC and PCS

Central Control System

- Friendly GUI
- Process control logic
- Events distribution

Process Control System

- CFETR time
- Pulse Scheduling
- Reference clocks

Timing Synchronization system

Central Interlock System

- Project-wide level
- Protects the facility
- Reliability of information sources

Central Safety System

- Monitor Nuclear
- Conventional Risk
- Personal Access

Plasma Control System

CODAC network and framework

Interlock Network
Contents

• Introduction to CFETR Engineering design and R&D
• Data management and collaboration network for CFETR design
• CODAC and PCS concept for CFETR
• EAST plasma control for CFETR
 – Magnetic control: Z, MIMO, advanced shape,
 – Heat load control: radiation, detachment, QSF
 – Kinetic control: profile,…
• Summary
3D effects to the vertical stabilization: CarMa0 model

- CarMa0 is a linearized plasma response model, able to evaluate self-consistently the effect of 3D conducting structures on axisymmetric \((n = 0)\) plasma evolution, using a coupling surface to describe the electromagnetic interaction between the plasma and the conductors.

Inside \(\Omega\): linearized Grad-Shafranov equations are solved, using 2nd order triangular finite elements mesh.

Outside \(\Omega\): eddy currents equations are solved in 3D conducting structures, using volumetric hexaedral mesh of conductors only.

On \(\partial\Omega\): surface currents magnetically equivalent to the ‘true’ plasma perturbation.
3-D Carma00 Modeling reproduces exp. Z growth

<table>
<thead>
<tr>
<th>Shot#</th>
<th>Experimental</th>
<th>3D model</th>
<th>2D model</th>
<th>3D no support</th>
<th>2D model with only vv</th>
</tr>
</thead>
<tbody>
<tr>
<td>35288</td>
<td>96</td>
<td>99</td>
<td>77</td>
<td>238</td>
<td>N.A.</td>
</tr>
<tr>
<td>35289</td>
<td>102</td>
<td>90</td>
<td>72</td>
<td>204</td>
<td>2952</td>
</tr>
<tr>
<td>35290</td>
<td>84</td>
<td>88</td>
<td>70</td>
<td>197</td>
<td>2495</td>
</tr>
<tr>
<td>36192</td>
<td>210</td>
<td>201</td>
<td>177</td>
<td>1237</td>
<td>N.A.</td>
</tr>
<tr>
<td>36537</td>
<td>227</td>
<td>230</td>
<td>144</td>
<td>2025</td>
<td>N.A.</td>
</tr>
<tr>
<td>36539</td>
<td>316</td>
<td>320</td>
<td>178</td>
<td>6278</td>
<td>N.A.</td>
</tr>
<tr>
<td>38074</td>
<td>152</td>
<td>141</td>
<td>99</td>
<td>467</td>
<td>N.A.</td>
</tr>
<tr>
<td>38148</td>
<td>197</td>
<td>174</td>
<td>109</td>
<td>835</td>
<td>N.A.</td>
</tr>
<tr>
<td>43896</td>
<td>136</td>
<td>151</td>
<td>105</td>
<td>538</td>
<td>N.A.</td>
</tr>
<tr>
<td>43897</td>
<td>152</td>
<td>147</td>
<td>103</td>
<td>505</td>
<td>N.A.</td>
</tr>
<tr>
<td>43907</td>
<td>194</td>
<td>178</td>
<td>115</td>
<td>880</td>
<td>N.A.</td>
</tr>
<tr>
<td>43908</td>
<td>241</td>
<td>276</td>
<td>150</td>
<td>4383</td>
<td>N.A.</td>
</tr>
<tr>
<td>43914</td>
<td>225</td>
<td>200</td>
<td>124</td>
<td>1241</td>
<td>N.A.</td>
</tr>
<tr>
<td>44003</td>
<td>222</td>
<td>221</td>
<td>133</td>
<td>1736</td>
<td>N.A.</td>
</tr>
<tr>
<td>44017</td>
<td>224</td>
<td>214</td>
<td>131</td>
<td>1553</td>
<td>N.A.</td>
</tr>
<tr>
<td>44018</td>
<td>243</td>
<td>222</td>
<td>134</td>
<td>1751</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
2D model can be derived by fit to the 3D calculation

Stability margin fit by distance (4.4 cm) of PFC to plasma

- Right Eqv. 2D: 10 resistivity to the support,
- others 1.15 resistivity
Vertical Stability Control

- Decoupled with shape control by not control the position directly
- Optimize the controller by considering the latency to reduce RMS
 \[V_{IC} = \frac{1 + s\tau_1}{1 + s\tau_2} (K_1 \cdot I_{p,ref} \cdot \frac{s\tau_p}{1 + s\tau_3} + K_2 I_{IC}) \]
 Bandpass filter for matching delay
- Use Vloop to estimate \(\frac{dz}{dt} \) signal for better SNR
 \[\frac{dz}{dt} = \frac{V_1 - V_2}{I_p} \left(\frac{\partial M_{pl2}}{dz} - \frac{\partial M_{pl1}}{dz} \right) \]
TSC reproduced Exp. Z control, and dzmax

Shot 52444, the trajectories of fast Z (dZfast), IC voltage command (V_C), IC actual voltage (V_A) and corresponding IC current simulated by TSC (black line) are compared with experimental data (red line).

Numerical investigation of the Bang-bang method for dz = 38.9 mm (blue line), 41.8 mm (black dash) & 44.8 mm (red dot) by TSC
MIMO control for PF coil current

- Using inductive matrix to decouple the coils
- Truncated the decoupled matrix to having more robust control

SISO:

\[V_{PF} = K_{PID} \left(I_{PF} - I_{PFref} \right) \]

MIMO:

\[V_{PF} = M \cdot K_{PID} \left(I_{PF} - I_{PFref} \right) + I_{PF}R \]

Induced current:

\[L_{PF} = USV^T \]

\[M = VS_{Trunc}^{-1}U^T \]

- Decoupling matrix
• Using plasma response matrix to decouple the control for different control points
 \[\Delta \psi = C_{PF} \Delta I_{PF} \rightarrow \Delta I_{PF} = M \cdot K_{PID} \Delta \psi \]
• Truncated the decoupling matrix matrix to having more robust control
 \[C_{PF} = USV^T \]
 \[S = diag(s_1, s_2, \ldots, s_n) \]
 \[s_1 > s_2 > \ldots > s_k >> s_{k+1} > \ldots > s_n \]
 \[S_k = diag(s_1, s_2, \ldots, s_k, 0, \ldots) \]
 \[M = VS_k^{-1} U^T \]
MIMO control for plasma shape

- **Accuracy control:** $\delta \Psi_{\text{err}} < 1\text{mWb}$
- **Stable under density disturbance**
Radiation Feedback control

Latency: Gas Puff > 100 ms, SMBI ~ 1 ms
Radiation Feedback Control

EAST #71019

- Rad power target
- Rad power real
- OUPEV1 pulse
- SMBI3 pulse

- Da
- Ip
- WMHD
- Density

REF: NF(2018)
H-mode detachment by feedback control of Div-LP js with D2 SMBI

\[W_{\text{mhd}} \text{ loss } < 20\% \]
H-mode detachment via feedback control of Div-LP js module with divertor neon seeding

- the particle flux reduced
- the plasma stored energy slightly increases rather than decreases
- the plasma line-averaged density was maintained quite stably
QSF effectively reduces heat load to Div. Target

Flux expansion of QSF at out strike point is factor ~3 than LSN

IR measurements show a peak heat load reduction for QSF of a factor ~1.5 with respect the LSN
A long-pulse operation, ELM-free high-confinement steady-state pulse, lasting up to 21s, is achieved and limited only by the imposed technical scenario constraints.

A stable QSF configuration reached at \(\sim 2.7\) s, whilst the high-confinement was achieved at \(\sim 3.5\) s with \(H_{98} \sim 1.2\)

After 3.5 s, until plasma ramp-down, the loop voltage is kept at 0 indicating full non-inductive current drive.

Stable plasma parameters are maintained through whole discharge until the plasma ramp-down

Radiation either in the core or in the edge is kept constant, a good particle control & no impurity accumulation.
Framework of plasma current profile control in EAST

Real-time Current Profile Evaluator

Profile Diagnostics

Current Profile Control Algorithm in PCS

Feedforward Inputs

Target Trajectories

PCS density controller

PCS LHW controller

PCS NBI controller

PCS ECR controller

$q(\psi_n), q(\rho), \beta_p, l_i, W_{mhd}$

n_e, T_e, T_i

$\bar{n}_e, P_{LHW}, P_{NBI}, P_{ECR}$

$q(\rho, t), \beta(t)$...
Preliminary Plasma current profile control in EAST

Current Profile Evaluator: \(\mu_0 J_0 \approx \frac{\text{POINT}_F5}{\text{POINT}_N5} - \frac{\text{POINT}_F7}{\text{POINT}_N7} \) \(J_{\text{Ratio}} \approx \frac{J_0}{I_P} \)

Target Trajectories: \(J_{\text{Ratio}} \rightarrow 0.26 \)

Actuator: 4.6G Low Hybrid Wave
Summary

• For CFETR engineering design, a collaborative network, design platform and database, and document management have been built.

• CFETR CODAC and PCS development started.

• A series of plasma control researches have been conducted aiming at more robust magnetic control and controllability, kinetic control and heat load control and demonstration of future CFETR plasma controls.