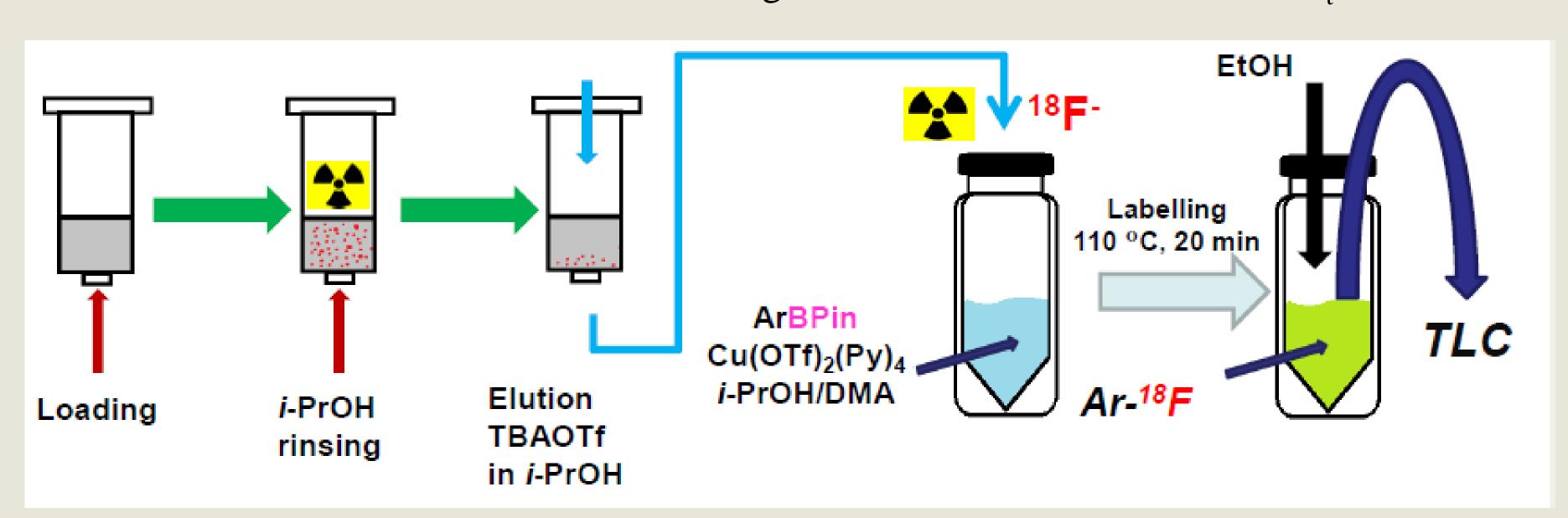


Nucleophilic synthesis of 6-[18F]fluoro-L-DOPA via copper mediated radiofluorination

INDICO 33


R.N. Krasikova, O.S. Fedorova, O.F. Kuznetsova, V.V. Orlovskaya N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint-Petersburg, Russia

Background and objectives Radiopharmaceuticals for positron emission tomography (PET) bearing electron rich [¹⁸F]fluorinated arenes are still in limited use as the direct introduction of [¹⁸F]fluoride via commonly used S_NAr is not suitable. Recently, several transition metal-mediated labeling strategies have been introduced, to address this problem. Among them radiofluorination of pinacol esters of arylboronic acids (ArylBPin) mediated by copper triflate complex with pyridine [1] is one of the more promising synthetic avenues under development. This new methodology allows facilitate access to clinically relevant radiotracers, ¹⁸F-ring fluorinated aromatic amino acids, drug-like molecules and others. However, implementation of the copper-mediated fluorination in automated synthesizers remains a challenging task. Several studies indicated that the choice of phase-transfer catalyst (PTC) and corresponding base used for the generation of reactive [¹⁸F]fluoride species has a profound impact on the ¹⁸F-fluorination fluorination of base-sensitive ArylBPin precursors.

Here we introduce a new ¹⁸F-processing protocol using tetrabutylammonium triflate (TBAOTf) as a neutral PTC and its application in the preparation of 6-[¹⁸F]fluoro-L-DOPA *via* copper-mediated fluorination of commercially available ArylBPin precursor.

Methodology Radiolabeling precursor, 3,4-OMOM-6-(BPin)DOPA(Boc2)-OtBu (see labeling scheme), was kindly provided by ABX, Germany. Aqueous [¹8F]fluoride was loaded onto QMA carb SepPak cartidge (46 mg) from the male side, the cartridge was rinsed by 1.5 mL of *i*-PrOH and dried with helium. ¹8F- was eluted in the opposite direction using a solution of 12.5 μmol of TBAOTf in 0.6 mL *i*-PrOH directly to a solution of 5 μmol of Cu(OTf)₂Py₄, 8 μmol of labeling precursor in 0.3 mL DMA. The mixture was heated in a sealed vial at 110°C for 15 min under air. After intermediate purification (two C18 SepPak cartridges in a series) and acid hydrolysis the crude 6-[¹8F]fluoro-L-DOPA was purified by HPLC: RP-Amide, Supelco, 250 x 10 mm, NaOAc 10 mM + AcOH 50 mM + 0,1 g/l ascorbic acid; flow 4 ml/min; R_t 9 min.

- > no azeotropic drying or solvent evaporation steps
- direct fluorination in the
 i-PrOH/DMA
- > easy to automate

Results and discussion First, developed 18 F-processing protocol allowed eliminate conventional azeotropic drying step and facilitate automation. The use of TBAOTf as a PTC provides a high 18 F-elution efficiency (up to 90%) and radiochemical conversion (RCC) of 83 ± 6 (n=7) as determined by radioTLC. The desired tracer was obtained in a RCY of 20% (non-optimized, corrected for decay), radiochemical purity > 97% and enantiomeric purity > 98% within 80 min synthesis time. Notably, the suggested procedure employed reduced amounts of expensive precursor (8 μ mol) and Cu-catalyst (8 μ mol). Work is now in progress to optimize hydrolysis and purification conditions to increase isolated radiochemical yield.

Table 1. Cu-mediated synthesis of 6-[18F]fluoro-L-DOPA using different PTC/bases

Precursor	PTC, solvent	Azeotropic drying	Precursor, µmol	Cu(OTf) ₂ (Py) ₄ µmol	RCC, %	Ref.
MeO COOEt NBoc ₂ MeO BPin	K2.2.2/ K ₂ C ₂ O ₄ /K ₂ CO ₃ , CH ₃ CN, H ₂ O	Yes	22	20	_	[2]
Boc COOtBu NBoc ₂ Boc BPin	Et ₄ NHCO ₃ , <i>n</i> -BuOH	No	60	53	68	[3]
MOMO COOtBu NBoc ₂ MOMO BPin (ABX, Germany)	Bu ₄ NOTf/ Cs ₂ CO ₃ , H ₂ O	Yes	4	20 + pyridine	55	[4]
	Bu ₄ NOTf, <i>i</i> -PrOH	No	8	8	83±6 (n=7)	This work

- the use of TBAOTf provides high RCC value using lower amounts of expensive precursor and copper catalyst
- > no residual copper in the final preparations

References

- 1. Tredwell M., Preshlock S. M., Taylor N. J. et al., Angew. Chem., Int. Ed. 2014, 53: 7751
- 2. Preshlock S., Calderwood S., Verhoog S. et al., *Chem. Commun.*. **2016**, 52(54): 8361-4
- 3. Zischler J., Kolks D., Modemann B. et al., Chem. Eur. J., 2017, 23(14): 3251-3256
- 4. Mossine A.V., Tanzey S.S., Brooks A.F. et al, Org Biomol Chem., 2019, 17(38): 8701-5

Conclusion The suggested novel ¹⁸F-processing protocol enables the simple and efficient production of 6-[¹⁸F]fluoro-LDOPA from commercially available ArylBPin precursor avoiding time consuming solvent evaporation steps. This method can be further extended for the preparation of other ¹⁸F-ring fluorinated amino acids.