Probing Forensic Signatures of Nuclear Materials

11 July 2014
What is the problem that a Molecular and Chemical Forensic approach is addressing?

• Increasingly varied and asymmetric threats are expanding the scope of nuclear forensics

• Signatures are varied and can evolve, while any given sample may include multiple signatures

• The scale of a signature may be tiny or LARGE

• Accurate, effective technical analysis depends on
 - identifying new signatures
 - understanding measurement limitations
 - evaluating complementary nature between traditional and new measurements
 - assessing the value of the information

• Production, conversion and aging of actinide materials are chemical in nature
What do we mean by chemical speciation?

Physical (or Phase) Speciation
• Refers indirectly to the phase association: dissolved, or associated with various mineral or colloidal phases

Chemical Speciation
• Refers to the chemical form and generally includes a knowledge of phase
• Depending on the type of information, various levels exist
 • Identity of the element
 • Physical state
What do we mean by chemical speciation?

Physical (or Phase) Speciation
- Refers indirectly to the phase association: dissolved, or associated with various mineral or colloidal phases

Chemical Speciation
- Refers to the chemical form and generally includes a knowledge of phase
- Depending on the type of information, various levels exist
 - Identity of the element
 - Physical state
 - Oxidation state
What do we mean by chemical speciation?

Physical (or Phase) Speciation
• Refers indirectly to the phase association: dissolved, or associated with various mineral or colloidal phases

Chemical Speciation
• Refers to the chemical form and generally includes a knowledge of phase

• Depending on the type of information, various levels exist
 • Identity of the element
 • Physical state
 • Oxidation state
 • Empirical formula
What do we mean by chemical speciation?

Physical (or Phase) Speciation
• Refers indirectly to the phase association: dissolved, or associated with various mineral or colloidal phases

Chemical Speciation
• Refers to the chemical form and generally includes a knowledge of phase

• Depending on the type of information, various levels exist
 • Identity of the element
 • Physical state
 • Oxidation state
 • Empirical formula
 • Molecular formula
 • Molecular structure
Actinide processing is rich in chemical information

- > 10 phases between UO$_2$ and UO$_3$, in addition to hydrated forms of UO$_3$

- Deceptively simple formula and cubic structure of UO$_2$ masks incredibly complex speciation

- Weathering under environmental conditions may effect changes in morphology, chemical speciation

- Can chemical speciation of major and minor constituents be measured?
- Do signatures of chemical speciation change over time?
- How can we ground these measurements with standards?
What tools provide access to chemical speciation?

Morphology
- Scanning Electron Microscopy

Elemental
- SEM-Energy Dispersive Spectroscopy
- Inductively Coupled Plasma – Mass Spectrometry

Structural (lattice)
- X-ray diffraction analysis
- X-ray Absorption Spectroscopy
- γ-UO₃
Measurement Capabilities

Morphology

- FEI Quanta 200F Field Emission Scanning Electron Microscope
- Bruker D8 ADVANCE powder X-ray diffractometer

Elemental/isotopic Analysis

- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA
- Thermo Finnigan Element XR ICP-MS

Chemical Speciation

- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA
How is local structure through XAFS determined?

XAFS - X-ray Absorption Fine Structure
high energy X-rays allow for excitation of core electrons to bound states

XANES - X-ray Absorption Near Edge Structure
arises from differences in oxidation state, local structure

EXAFS - Extended X-ray Absorption Fine Structure
distribution of interatomic distances around atoms
Systematic experiments on UO$_2$ using EXAFS to measure sensitivity to oxidation.

With H$_2$O, intermediate temperature

![Graph showing EXAFS results for UO$_{2+x}$ with H$_2$O.

Weak CO:CO$_2$ oxidizer, high temperature

![Graph showing EXAFS results for UO$_{2+x}$ with weak CO:CO$_2$ oxidizer.

Increased oxidation yields monotonic changes.

Reference information is derived from high-purity uranium oxide bulk materials

\[U^0 \rightarrow UO_2^{2+} \]

\[UO_2^{2+} + H_2O_2 \xrightarrow{pH 3 \text{ air}} UO_2(O_2)\cdot xH_2O \]

\[UO_2(O_2)\cdot 2H_2O \xrightarrow{400^\circ C \text{ air}} A-UO_3 \]

\[A-UO_3 \xrightarrow{900^\circ C \text{ air}} U_3O_8 \]

\[A-UO_3 \xrightarrow{500^\circ C \text{ H}_2} UO_2 \]

NIST SRM U960
NBL A112A

UO_2(O_2)\cdot xH_2O precipitation

Reaction vessel

Tube furnace
Can trace chemical species be measured from legacy samples of U_3O_8

<table>
<thead>
<tr>
<th>Precipitate Source</th>
<th>Precipitate</th>
<th>Sample Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNH</td>
<td>UO$_4$</td>
<td>U_3O_8</td>
</tr>
<tr>
<td>pH 1 20ºC</td>
<td>800ºC</td>
<td></td>
</tr>
<tr>
<td>UNH</td>
<td>UO$_4$</td>
<td>U_3O_8</td>
</tr>
<tr>
<td>pH 1 20ºC</td>
<td>975ºC</td>
<td></td>
</tr>
<tr>
<td>UO$_2$F$_2$</td>
<td>ADU</td>
<td>U_3O_8</td>
</tr>
<tr>
<td>pH 8.4 20ºC</td>
<td>800ºC</td>
<td></td>
</tr>
</tbody>
</table>

Age of samples: ~2-3 years
Common source of starting material
Preparation scale: 10 g
Comparison of SEM images of U_3O_8 materials at time 0

S1

- 900°C
- $\text{A-UO}_3 \rightarrow \text{U}_3\text{O}_8$
- Air

L1

- 20°C
- 800°C
- $\text{UNH} \rightarrow \text{UO}_4 \rightarrow \text{U}_3\text{O}_8$
- pH 1

L2

- 20°C
- 975°C
- $\text{UNH} \rightarrow \text{UO}_4 \rightarrow \text{U}_3\text{O}_8$
- pH 1

L3

- 20°C
- 800°C
- $\text{UO}_2\text{F}_2 \rightarrow \text{ADU} \rightarrow \text{U}_3\text{O}_8$
- pH 8.4
Comparison of reference lines with pXRD patterns of U$_3$O$_8$ materials identifies speciation

A-UO$_3$ \rightarrow U$_3$O$_8$
900ºC

UNH \rightarrow UO$_4$ \rightarrow U$_3$O$_8$
900ºC

UNH \rightarrow UO$_4$ \rightarrow U$_3$O$_8$
800ºC

UO$_2$F$_2$ \rightarrow ADU \rightarrow U$_3$O$_8$
20ºC

20ºC 975ºC
UNH \rightarrow UO$_4$ \rightarrow U$_3$O$_8$
pH 1

20ºC 800ºC
UO$_2$F$_2$ \rightarrow ADU \rightarrow U$_3$O$_8$
pH 8.4

800ºC

20ºC 800ºC
A-UO$_3$ \rightarrow U$_3$O$_8$
900ºC

air
EXAFS of U_3O_8 materials reveals disorder

Graph:

- **S1 t=0**
- **L1 t=0**
- **L2 t=0**
- **L3 t=0**

Legend:

- $\text{UO}_3 \rightarrow \text{U}_3\text{O}_8$
- $\text{UNH} \rightarrow \text{UO}_4 \rightarrow \text{U}_3\text{O}_8$
- $\text{pH} 1$
- $(\text{UO}_2(\text{O}_2) \cdot x\text{H}_2\text{O})$
- $\text{UNH} \rightarrow \text{UO}_4 \rightarrow \text{U}_3\text{O}_8$
- $\text{pH} 1$
- $(\text{U}_3\text{O}_8 + \text{UO}_3 \cdot x\text{H}_2\text{O})$
- $\text{UO}_2\text{F}_2 \rightarrow \text{ADU} \rightarrow \text{U}_3\text{O}_8$
- $\text{pH} 8.4$
- $(\text{U}_3\text{O}_8 + \text{UO}_2\text{F}_2 \cdot x\text{H}_2\text{O})$
Aging Vessels and Circulating Bath

Anovitz, L. M.; Ricuputi, L. R.; Cole, D. R.; Gruszkiewicz, M. S.; Elam, J. M.
Do these chemical signatures change over time?

Constant relative humidity (± 2%) is produced by an excess of a water soluble salt in contact with its saturated solution.

• ASTM International, Designation: E104-02, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions

• CRC Manual, Constant Humidity Solutions

\[RH = A \times \exp\left(\frac{B}{T}\right) \]

Lithium Iodide:
25% RH at 278.15 K
15% RH at 310.15 K

Potassium Nitrate:
97% RH at 278.15 K
89% RH at 310.15 K

Relative Humidity = Actual Vapor Density
Saturation Vapor Density

Conditions	Water vapor density
LTLH | 1.7e-06 g/cm³
HTLH | 6.6e-06 g/cm³
LTHH | 6.7e-06 g/cm³
HTHH | 39e-06 g/cm³
Liquid water | ~1 g/cm³

Note: LA-UR 14-24839
Morphology of S1 at all conditions after 0 and 2 years

- A-UO₃ → U₃O₈
 - 900ºC
 - Air

- LANL U₃O₈ T=0 yrs.
- T=2 yrs. LTHH-5ºC @ 97% RH
- T=2 yrs. LTHH-5ºC @ 25% RH
- T=2 yrs. HTHH-37ºC @ 15% RH
- T=2 yrs. HTHH-37ºC @ 89% RH
pXRD patterns of S1 at all conditions after 3 years reveals speciation

A-\(\text{UO}_3\) \(\rightarrow\) \(\text{U}_3\text{O}_8\)

900\(^\circ\)C
air

\(\text{S1, } t=0\)
\(\text{S1, HTHH(3 yr)}\)
\(\text{S1, LTHH(3 yr)}\)
\(\text{S1, HTLH(3 yr)}\)
\(\text{S1, TLTHH(3 yr)}\)

01-073-6293 > \(\text{U}_3\text{O}_8\) - Uranium Oxide

00-050-1601 > Schoepite - \((\text{UO}_2)_8\text{O}_2(\text{OH})_{12} \cdot 12\text{H}_2\text{O}\)
EXAFS of S1 at all conditions after 0 and 3 years

\[\text{A-UO}_3 \rightarrow \text{U}_3\text{O}_8 \quad 900^\circ \text{C} \quad \text{air} \]

Graph:
- S1 LTHH (3 yr)
- S1 HTHH (3 yr)
- S1 LTLH (3 yr)
- S1 HTLH (3 yr)
- S1 t=0

Graph axes:
- X-axis: R - \(\phi \) (Å)
- Y-axis: Magnitude of FT \(k^2 \chi(k) \)

Images:
- LANL UO3 T=0 yrs
- HTTH-57C @ 15% RH
- HTTH-37C @ 35% RH

Legend:
- U-O
- U-U
Morphology of L2 U₃O₈ at all conditions after 0 and 2 years

20°C, 975°C
UNH → UO₄ → U₃O₈
pH 1
(U₃O₈ + UO₃·xH₂O)

T=2 yrs.
LTLH-5°C @ 25% RH

T=2 yrs.
HTHH-37°C @ 97% RH

T=2 yrs.
LTHH-5°C @ 97% RH

T=2 yrs.
HTLH-37°C @ 15% RH
pXRD patterns of L2 U₃O₈ at all conditions after 2 years reveals speciation

20°C 975°C
UNH → UO₄ → U₃O₈ (U₃O₈ + UO₃·xH₂O)
pH 1

UNH → UO₄ → U₃O₈

20ºC 975ºC

UNCLASSIFIED
EXAFS of L2 U$_3$O$_8$ at all conditions after 0 and 2 years

20ºC
UNH → UO$_4$ → U$_3$O$_8$

975ºC
pH 1
(U$_3$O$_8$ + UO$_3$·xH$_2$O)

20ºC

U-O

U-U

Magnitude of FT $k^3 \chi(k)$

R + Δ (Å)

L2 HTHH (2 yr)
L2 LTLH (2 yr)
L2 HTLH (2 yr)
L2 t=0
Morphology of L3 U₃O₈ at all conditions after 0 and 2 years

20°C, 800°C
UO₂F₂ → ADU → U₃O₈
pH 8.4

(U₃O₈ + UO₂F₂·xH₂O)

20ºC, 800ºC
UO₂F₂ → ADU → U₃O₈
pH 8.4

(U₃O₈ + UO₂F₂·xH₂O)
pXRD patterns of L3 U$_3$O$_8$ at all conditions after 2 years reveal oxidation.
EXAFS of L3 U₃O₈ at all conditions after 0 and 2 years

20°C 800°C
UO₂F₂ → ADU → U₃O₈ (U₃O₈ + UO₂F₂·xH₂O)
pH 8.4
20ºC 800ºC
(U₃O₈ + UO₂F₂·xH₂O)

Magnitude of FT $k^3 \chi(k)$

R - φ (Å)

- L3 LTHH (2 yr)
- L3 HTHH (2 yr)
- L3 LTLH (2 yr)
- L3 HTLH (2 yr)
- L3 t=0
Morphology of L1 at all conditions after 0 and 2 years

$\text{T=2 yrs. LTLH-5^\circ C @ 25\% RH}$

$\text{T=2 yrs. HTHH-37^\circ C @ 89\% RH}$

L1 T=0 yrs.

20^\circ C
800^\circ C
$\text{UNH \rightarrow UO_4 \rightarrow U_3O_8}$
pH 1

$(UO_2(O_2)\cdot xH_2O)$

$\text{T=2 yrs. HTLH-37^\circ C @ 15\% RH}$
pXRD patterns of L1 U₃O₈ at all conditions after 3 years reveals hydration

\[
UNH \rightarrow UO_4 \rightarrow U_3O_8 \quad (UO_2(O_2) \cdot xH_2O)
\]
EXAFS of L1 U$_3$O$_8$ at all conditions after 0 and 3.5 years

20°C
UNH \rightarrow UO$_4$ \rightarrow U$_3$O$_8$ (UO$_2$(O$_2$)$_x$·xH$_2$O)
pH 1

Magnitude of FT $k^2 \chi(k)$

R - φ (Å)

- L1 LTLH (3.5 yr)
- L1 HTLH (3.5 yr)
- L1 LTHH (3.5 yr)
- L1 HTHH (3.5 yr)
- L1 t=0
Conclusions

• Processing of uranium oxides is chemical in nature, providing opportunities for measurements of chemical signatures

• Results from an integrated approach rely upon synthesis, spectroscopy and morphologic characterization of a variety of materials

• Chemical speciation following aging under environmental conditions is providing insights into chemical transformations

• Speciation can be characterized, not only by \(\mu \)-XRD and \(\mu \)-XANES spectroscopy, but also via \(\mu \)-EXAFS measurements, an incisive technique for determining chemical speciation and changes in local structure
Acknowledgements

Synthesis
Dallas D. Reilly, Univ. Nevada-Las Vegas
Alison L. Tamasi, Univ. Missouri-Columbia (NTNFC Graduate Fellow)

Morphology
Beau J. Barker, LANL Seaborg Institute Postdoc Fellow
Gregory L. Wagner, Technologist 2
Sandra A. Zerkle, UCSD undergraduate
Mindy M. Zimmer, Postdoc

Powder X-ray Diffraction Analysis
Brian L. Scott

X-ray Absorption Spectroscopy
Steven D. Conradson
Stosh A. Kozimor
Alison L. Pugmire (LANL LDRD Early Career Award)

Isotopic Analysis
William S. Kinman

Computational Analysis
Tyler Mullen, High School Co-Op
Reid B. Porter
Christy E. Ruggiero
Lav Tandon

Theory
Jason K. Ellis, Postdoc
Richard L. Martin

Additional Collaborators
Larry Anovitz, University of Tennessee
Corwin H. Booth, LBNL
Carol J. Burns
David L. Clark
Kenneth Czerwinski, Univ. Nevada-Las Vegas
Julianna E. Fessenden-Rahn
Susan D. Hanson
Justin Holland, Y-12 NSC
Andrew Sutton
Larry E. Ussery
Gregory J. Van Tuyle
Justin R. Walensky, Univ. Missouri
Sam Webb, SSRL

This work has been supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-08-X-00805. This support does not constitute an express or implied endorsement on the part of the Government.