Transport Characteristics of Deuterium and Hydrogen Plasmas with Ion ITB in LHD

K. Nagaoka1,2

H. Takahashi1,3, M. Nakata1,3, K. Tanaka1,4, K. Mukai1,3, M. Yokoyama1,3, H. Nakano1,3, S. Murakami5, K. Ida1,3, M. Yoshinuma1,3, S. Ohdachi1,3, T. Bando6, M. Nunami1,3, S. Satake1,3, R. Seki1,3, C. Suzuki1,3, H. Yamaguchi1, M. Osakabe1,3, T. Morisaki1,3 and the LHD Experiment Group

1National Institute for Fusion Science, National Institutes of Natural Sciences
2Nagoya University, Graduate School of Science
3SOKENDAI, Department of Fusion Science
4Kyushu University, Interdisciplinary Graduate School of Engineering Sciences
5Kyoto University, Graduate School of Engineering
6National Institutes for Quantum and Radiological Science and Technology
1. Introduction

2. Transport characteristics and improvement
 - T_e/T_i dependence
 - R/L_{Ti} dependence

3. Isotope effects
 - Lower χ_i in deuterium plasma
 - Nonlinear transport simulation (GKV)

4. Summary
• The T_i is higher than the T_e in the core of NBI heated plasma.
• The peaked T_i profile with steep gradient (ion ITB) formed, and no ITB was observed in the T_e and density profiles.
• Significant reduction of anomalous ion heat transport with $E_r<0$ (ion-root).
• Carbon impurity was expelled from the core (Impurity hole formation)
ITG is dominated in high-T_i plasmas in LHD

Gyrokinetic Vlasov code (GKV)
- 5 dimensions in phase space
- local flux tube
- Inward shifted LHD plasmas

In high-T_i regime ($R/L_{T_i} \sim 10$), **ITG mode** is the most unstable

- Growth rate increases with R/L_{T_i} ($= -(R/T_i)(dT_i/dr)$)
- Growth rate increases with T_e/T_i as well

Therefore, we focus on R/L_{T_i} and T_e/T_i dependence
Deuterium experiment in LHD
Specifications

- Helical mode numbers: $l/m=2/10$
- All superconducting coil system
- Plasma major radius: 3.42-4.1 m
- Plasma minor radius: 0.63 m
- Plasma volume: 30 m^3
- Toroidal field strength: 3 T
- 20 RMP coils

Deuterium experiment in LHD

Positive, perp.
6 MW/40 keV
-> 9 MW/80 keV

Negative, tang.
5 MW/180 keV

Negative, tang.
6 MW/180 keV

Positive, perp.
6 MW/40 keV
-> 9 MW/80 keV
Extension of high-\(T_i\) regime \((T_{i0}=10\text{keV})\)

- \(T_{i0}=10\text{keV} \pm 0.2\text{keV} \left(Z_{\text{eff}}=\sim2\right)\) was achieved
- C pellet + He gas puff
- D beams (p-NBI) + H beams (n-NBI)
- MHD bursts (EIC) degraded the neutron rate and \(T_{i0}\)

The ion heat transport with D is improved, although the D ion ratio is roughly 30% of ion density.
In order to evaluate the transport in more detail and discuss isotope effect, pure H plasmas and pure D plasmas are analyzed in this study.
1. Introduction

2. Transport characteristics and improvement
 - T_e/T_i dependence
 - R/L_{Ti} dependence

3. Isotope effects
 - Lower χ_i in deuterium plasma
 - Nonlinear transport simulation (GKV)

4. Summary
Pure Hydrogen and Pure Deuterium plasmas

Target plasmas analyzed in this study are High Purity of ion species

H plasma: \(\frac{n_H}{n_e} > 0.80 \) with H gas puff + H beams

D plasma: \(\frac{n_D}{n_e} > 0.80 \) with D gas puff + D beams
ITG like T_e/T_i dependence

- Significant increase of heat transport depending on T_e/T_i \Rightarrow consistent with ITG turbulence
- No significant difference in T_e/T_i dependence between H and D plasmas
Transport suppression with \((R/L_{Ti})\)

- Reduction of heat transport with \(R/L_{Ti}\), inconsistent with ITG nature
 \(\Rightarrow\) ion ITB formation
- Transport suppression in D plasmas
 \(\Rightarrow\) another mechanism of transport suppression depending on ion mass
Turbulent suppression depending on ion mass and R/L_{Ti}

Radial electric field shear ($E\times B$ poloidal rotation)

$$\nabla_{E\times B} = |d\nu_{E\times B}/dr|(R/\nu_{ti})$$

Burrell PoP1997, Jolliet NF2012

$$\propto \rho^*(\partial_{\rho}((k-1)R/L_T - R/L_n)/\partial\rho + (a/R)\partial_{\rho}(U_{||}/\nu_{ti})$$

- stabilization mechanism for both ITG and TEM
- finite Larmor radius effects may appear in high-Ti plasmas

$$\rho_{D:10keV}^* = 1/90, \rho_{H:10keV}^* = 1/130$$

\Rightarrow ion mass dependence

The $E\times B$ shear is a potential candidate of physics mechanism of turbulent suppression, although it should be confirmed by further experiments and global transport simulations in near future.
1. Introduction

2. Transport characteristics and improvement
 - T_e/T_i dependence
 - R/L_{Ti} dependence

3. Isotope effects
 - Lower χ_i in deuterium plasma
 - Nonlinear transport simulation (GKV)

4. Summary
Pure Hydrogen and Pure Deuterium plasmas

Target plasmas analyzed in this study are High Purity of ion species

H plasma: \(\frac{n_H}{n_e} > 0.80 \) with H gas puff + H beam

D plasma: \(\frac{n_D}{n_e} > 0.80 \) with D gas puff + D beam

Comparison with the same \(n_e \) and \(P_{i_{\text{tot}}} \)
Comparison between H plasma and D plasma

- Higher T_i in D plasma
- Steeper density gradient in the edge of D plasma
- Larger electron heating power in H plasma with a factor of 1.5
 \Rightarrow higher T_e (20-30%)
Transport analysis

- Significant reduction of the ion heat transport in the core of both plasmas \(\Rightarrow \) Ion ITB formations
- Smaller heat transport in D plasma
- Density fluctuation (PCI) is smaller in D plasma \(\Rightarrow \) correlating with heat transport
Nonlinear gyrokinetic simulation (GKV) with plasma profiles obtained in experiment

- Destabilization of ITG mode and nonlinear saturation
- Transport level is reproduced with the accuracy of 20% in T_i gradient
 $=>$ Global effects such as Er-shearing will improve the discrepancy
- Reproduce the reduction of ion heat transport in D plasma
Nonlinear gyrokinetic simulation (GKV) with plasma profiles obtained in experiment

- ZF energy partition is larger in D plasma with factor of 1.3
 => ZF enhancement may contribute the transport reduction in D plasmas
In D experiments in LHD, $T_{i0}=10\text{keV}$ was achieved, and transport analyses of Ion ITB plasmas and isotope effect were discussed.

On Ion ITB formation
- T_e/T_i dependence is ITG-like
- Transport reduction with R/L_{Ti}
 - \Rightarrow ion ITB
 - \Rightarrow suggesting the improvement with ExB shear

On isotope effect
- Ion heat transport reduction in D plasma
- Nonlinear sim. (GKV) reproduced the reduction of χ_i in D plasma, and observed the increase of ZF

These mechanisms contribute to the achievement of $T_{i0}=10\text{ keV}$ in the helical plasma
Thank you for your attention!
Neoclassical transport

- Neoclassical transport calculation with FORTEC3D
- The solution with $\text{Er} > 0$ was obtained, and should be checked experimentally
- The NC transport is smaller than experimental evaluation
 => turbulent dominates the transport
- The difference of NC transport between H and D plasma is smaller and cannot explain the experimental observation
Strategy of evaluation of isotope effects in LHD

Global confinement

Scaling of confinement time

\[\tau \sim A^{x_1} \cdot \rho_*^{x_2} \cdot \nu_*^{x_3} \cdot \beta^{x_4} \]

- wide parameter regime

Local transport

Dependence on local parameters, their gradients

\[\chi \sim A^{x_1} \cdot \rho_*^{x_2} \cdot \nu_*^{x_3} \cdot \beta^{x_4} \cdot (T_e/T_i)^{x_5} \cdot (R/T_T)^{x_6} \cdot (R/T_n)^{x_7} \cdots \]

- underlying physics
- excellent profile measurement
Nonlinear gyrokinetic simulation (GKV) with plasma profiles obtained in experiment

- Destabilization of ITG mode and nonlinear saturation
- Reduction rate of heat transport reproduced the experiment
- ZF energy partition is larger in D plasma with factor of 1.3

Global effects such as Er-shear effect will improve the discrepancy in the heat transport