Stability and Confinement Studies in EX/P5-25 the Gas Dynamic Trap

V.V.Prikhodko^{1,3}, P.A.Bagryansky^{1,3}, E.D.Gospodchikov^{1,2,4}, A.A.Lizunov¹, Z.E.Konshin^{1,3}, O.A.Korobeynikova^{1,3}, Yu.V.Kovalenko¹, V.V.Maximov^{1,3}, S.V.Murakhtin¹, E.I.Pinzhenin¹, V.Ya.Savkin¹, A.G.Shalashov^{1,2,4}, E.I.Soldatkina^{1,3}, A.L.Solomakhin^{1,3}, D.V.Yakovlev¹

- ¹ Budker Institute of Nuclear Physics, Novosibirsk, Russian Federation
- ² Institute of Applied Physics, Nizhny Novgorod, Russian Federation
- ³Novosibirsk State University, Novosibirsk, Russian Federation

⁴Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation

Abstract

Interest to magnetic mirrors went missing in the 1980's because of three key problems: magnets' complexity, micro-instabilities, and low temperature of plasma. However, researches on the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics demonstrated the possibility to overcome these difficulties. Confinement of plasma with high energy density has been performed on GDT device with simple circular coils. "Vortex confinement" has been implemented to suppress the radial losses induced by flute-like MHD instability inherent for axially symmetric devices. This technique allowed reaching local plasma beta close to 0.6. The auxiliary microwave heating on electron cyclotron resonance (ECR) frequencies raised the electron temperature up to 0.9 keV near the device axis. Alfven ion-cyclotron (AIC) instability has been observed, but not affect to the plasma power balance. The proposed report is dedicated to three following topics. The first is optimization of the "vortex confinement" in presence of ECR heating. Introducing the additional "vortex" layer inside the existing one allows extending high-temperature phase behind the atomic beams turn off time. The second is definition of critical parameters for the divertor. It was shown, that the critical wall position corresponds to expansion ratio of magnetic field K_{crit} ~40. This value is in a reasonable agreement with a simple theoretical model

and remains constant in the range of electron temperature up to 700 eV. The neutral gas in the divertor does not affect the discharge until its density exceeds an order of magnitude the plasma density. The third is study of unstable modes. In addition to AIC, the new type of oscillations was observed at the range of tens of ion-cyclotron frequencies. It was preliminary identified as Drift-Cyclotron Loss-Cone instability.

Optimization of the confinement in high-temperature regime

et. al. Phys. Plasmas 24, 122512 (2017)].

One gyrotron was used to produce pre-plasma by microwave discharge, another one heated the plasma. Central parts of segmented endplates were electrically biased to suppress MHD activity at the near-axis region. Electron axial losses: $\langle E_{e} \rangle = 4.6 \pm 0.4 T_{e}$.

References

- P.A.Bagryansky, A.G.Shalashov, E.D.Gospodchikov, et. al., Phys. Rev. Lett. 114, 205001 (2015).
- D.V.Yakovlev, A.G.Shalashov, E.D.Gospodchikov, et. al., Nucl. Fusion 58, 094001 (2018).

ΙΑΕΑ

• E.Soldatkina, M.Anikeev, P.Bagryansky, et al., Phys. Plasmas 24, 022505 (2017).

Presented by : Vadim Prikhodko E-mail: V.V.Prikhodko@inp.nsk.su

27th IAEA Fusion Energy Conference (FEC2018) Gandhinagar (Ahmedabad) Gujarat, India, 22-27 October 2018