Predictions of alpha-particle and neutral-beam heating and transport in ITER scenarios

E.M. Bass¹ and R.E. Waltz²

¹UC San Diego
²General Atomics

Acknowledgements: G. M. Staebler (GA), He Sheng (PKU)

Presented at
2018 IAEA Fusion Energy Conference
Ahmedabad, Gujarat, India

October 22 – 27, 2018
I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
Main takeaway: The local critical-gradient model (CGM) of AE transport of EPs shows redistribution from mid to outer core in ITER.

Mid-core AEs redeposit EPs to the outer radii where their energy is absorbed.

Time-averaged EP density profile corresponds directly to the heating profile.
I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: **Energetic particles** (fast ions). Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).
EP transport by so-called "Alfvén eigenmodes" (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: Energetic particles (fast ions). Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).

AEs: Alfvén eigenmodes. Alfvén frequency MHD modes. EP kinetic drive and transport. Different flavors (RSAE, TAE, BAE, BAAE, EPM, etc.), don’t matter here.
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: Energetic particles (fast ions). Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).

AEs: Alfvén eigenmodes. Alfvén frequency MHD modes. EP kinetic drive and transport. Different flavors (RSAE, TAE, BAE, BAAE, EPM, etc.), don’t matter here.
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: Energetic particles (fast ions). Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).

AEs: Alfvén eigenmodes. Alfvén frequency MHD modes. EP kinetic drive and transport. Different flavors (RSAE, TAE, BAE, BAAE, EPM, etc.), don’t matter here.
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: Energetic particles (fast ions). Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).

AEs: Alfvén eigenmodes. Alfvén frequency MHD modes. EP kinetic drive and transport. Different flavors (RSAE, TAE, BAE, BAAE, EPM, etc.), don’t matter here.
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: Energetic particles (fast ions). Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).

AEs: Alfvén eigenmodes. Alfvén frequency MHD modes. EP kinetic drive and transport. Different flavors (RSAE, TAE, BAE, BAAE, EPM, etc.), don’t matter here.
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: Energetic particles. Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).

AEs: Alfvén eigenmodes. Alfvén frequency MHD modes. EP kinetic drive and transport. Different flavors (RSAE, TAE, BAE, BAAE, EPM, etc.), don’t matter here.
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: Energetic particles (fast ions). Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).

AEs: Alfvén eigenmodes. Alfvén frequency MHD modes. EP kinetic drive and transport. Different flavors (RSAE, TAE, BAE, BAAE, EPM, etc.), don’t matter here.

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated.

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).

EPs have large orbits relative to thermal species, leading to:

- thermal gradients
- microturbulence
- EP gradient
- AEs

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).

EPs have large orbits relative to thermal species, leading to:
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated.

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).

Transport non-locality
DIII-D TAE with EP orbits

EPs have large orbits relative to thermal species, leading to:

- EPs have large orbits relative to thermal species, leading to:
 - Transport non-locality
 - DIII-D TAE with EP orbits
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

- EPs have large orbits relative to thermal species, leading to:
 - Sparse spectrum and high coherency:

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).

Transport non-locality:
DIII-D TAE with EP orbits
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).

EPs have large orbits relative to thermal species, leading to:

Sparse spectrum and high coherency:
- Intermittent transport, depending on global resonance intersections
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).

EPs have large orbits relative to thermal species, leading to:

Sparse spectrum and high coherency:
- Intermittent transport, depending on global resonance intersections
- Saturation sensitive to stochastic processes (e.g., collisions, microturbulence)
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated.

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).

EPs have large orbits relative to thermal species, leading to:

Sparse spectrum and high coherency:

- Intermittent transport, depending on global resonance intersections
- Saturation sensitive to stochastic processes (e.g., collisions, microturbulence)
- Formation of BGK bucket modes (frequency chirping)
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated.

So how dangerous are EP-driven AEs in ITER and other devices?

EPs have large orbits relative to thermal species, leading to:

- Sparse spectrum and high coherency:
 - Intermittent transport, depending on global resonance intersections
 - Saturation sensitive to stochastic processes (e.g., collisions, microturbulence)
 - Formation of BGK bucket modes (frequency chirping)
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated.

So how dangerous are EP-driven AEs in ITER and other devices?

It’s complicated!

EPs have large orbits relative to thermal species, leading to:
- Sparse spectrum and high coherency
- Transport non-locality
- EPs have large orbits relative to thermal species, leading to:

We need reduced models to get useful transport estimates.

Here, we focus on the ALPHA critical-gradient model, probably the simplest and most nimble in use.
I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

ALPHA code provides source parameters and finds time-invariant solution.

\(^1\)E.M. Bass and R.E. Waltz, PoP 17 112319 (2010)
\(^2\)Angioni and Peters, PoP 15 052307 (2008)
The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations\(^1\)

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

ALPHA transport EP continuity equation

ALPHA code provides source parameters and finds time-invariant solution.

\(^1\)E.M. Bass and R.E. Waltz, PoP 17 112319 (2010)
\(^2\)Angioni and Peters, PoP 15 052307 (2008)
The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations\(^1\)

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

ALPHA code provides source parameters and finds time-invariant solution.

\[S = n_p n_T \langle \sigma v \rangle_{DT} \]

\(^1\)E.M. Bass and R.E. Waltz, PoP 17 112319 (2010)
\(^2\)Angioni and Peters, PoP 15 052307 (2008)
The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations1

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

ALPHA transport EP continuity equation

ALPHA code provides source parameters and finds time-invariant solution.

\[S = n_D n_T \langle \sigma v \rangle_{DT} \]

\[n_{SD} = \int_0^\infty S \tau_s \frac{\Theta(E_c - E)}{2} \frac{E^{3/2}}{E_c^{3/2} + E^{3/2}} E^{1/2} dE \]

1E.M. Bass and R.E. Waltz, PoP 17 112319 (2010)

2Angioni and Peters, PoP 15 052307 (2008)
The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations\(^1\)

ALPHA transport EP continuity equation

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

fusion or beam source

\(\nabla \cdot \Gamma_{EP} \rightarrow 0\)

slowing-down sink (plasma heating)

Diffusive EP flux:

\[
\Gamma_{EP} = - \left(D_{\text{micro}} + D_{AE} \right) \nabla r n_{EP}
\]

ALPHA code provides source parameters and finds time-invariant solution.

\[
S = n_p n_T \langle \sigma v \rangle_{DT}
\]

fusion source

\[
n_{SD} = \int_0^\infty S \tau_s \frac{\Theta(E_a - E)}{2} \frac{E^{3/2}}{E_c^{3/2} + E^{3/2}} E^{1/2} dE
\]

classical slowing-down density

Gaffey 1976

\(^1\)E.M. Bass and R.E. Waltz, PoP 17 112319 (2010)

\(^2\)Angioni and Peters, PoP 15 052307 (2008)
The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations.\(^1\)

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

ALPHA transport EP continuity equation

Diffusive EP flux:

\[
\Gamma_{EP} = - (D_{\text{micro}} + D_{\text{AE}}) \nabla_r n_{EP}
\]

ALPHA code provides source parameters and finds time-invariant solution.

\[
S = n_D n_T \langle \sigma v \rangle_{DT}
\]

\[
n_{SD} = \int_0^\infty S \tau_s \frac{\Theta(E_c - E)}{2} \frac{E^{3/2}}{E_c^{3/2} + E^{3/2}} E^{1/2} dE
\]

1. E.M. Bass and R.E. Waltz, PoP **17** 112319 (2010)
The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations\(^1\)

ALPHA transport EP continuity equation

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

\(S = n_D n_T \langle \sigma v \rangle_{DT} \)

fusion source

classical slowing-down density

\(n_{SD} = \int_{0}^{\infty} S \tau_s \Theta(E_c - E) \frac{E^{3/2}}{E_c^{3/2} + E^{3/2}} E^{1/2} dE \)

Gaffey 1976

most unstable \(n \) critical gradient

stiff AE transport

ALPHA code provides source parameters and finds time-invariant solution.

\(\Gamma_{EP} = - \left(D_{micro} + D_{AE} \right) \nabla_r n_{EP} \)

\(D_{micro} \) is the effective background diffusion coefficient from the Angioni quasilinear model\(^2\) fit to GYRO.

The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations.

The ALPHA transport EP continuity equation is:

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}}\right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

\[
\Gamma_{EP} = -\left(D_{micro} + D_{AE}\right) \nabla r n_{EP}
\]

\(D_{micro}\) is the effective background diffusion coefficient from the Angioni quasilinear model fit to GYRO.

Critical gradient as a function of \(r\) determined by TGLFEP, the crucial input.

ALPHA code provides source parameters and finds time-invariant solution.

\[
S = n_p n_T \langle ov \rangle_{DT}
\]

Fusion or beam source

Diffusive EP flux:

\[
\Gamma_{EP} = -\left(D_{micro} + D_{AE}\right) \nabla r n_{EP}
\]

Gaffey 1976

Most unstable \(n\) critical gradient

Turbulence

Classical slowing-down density

Fusion source

\(n_{SD} = \int_0^{\infty} S \tau_s \Theta \left(\frac{E_a - E}{E^3_c + E^{3/2}}\right) E^{1/2} dE\)

The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations.

ALPHA transport EP continuity equation

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

- **Diffusive EP flux:**
 \[
 \Gamma_{EP} = - \left(D_{\text{micro}} + D_{AE} \right) \nabla r n_{EP}
 \]

- \(D_{\text{micro}}\) is the effective background diffusion coefficient from the Angioni quasilinear model fit to GYRO.

- **Critical gradient** as a function of \(r\) determined by TGLFEP, the crucial input.

\(S = n_D n_T \langle \sigma v \rangle_{DT}\)

ALPHA code provides source parameters and finds time-invariant solution.

fusion source

classical slowing-down density

\[
n_{SD} = \int_{0}^{\infty} \frac{S \tau_s}{2} \frac{\Theta(E_{\alpha} - E)}{E^{3/2} + E^{3/2}} E^{1/2} dE
\]

Gaffey 1976

AE transport level is part of solution

\[
D_{\text{micro}} + D_{AE} (\text{AU})
\]

The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations\(^1\)

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

ALPHA transport EP continuity equation

\(\Gamma_{EP} = - \left(D_{\text{micro}} + D_{\text{AE}} \right) \nabla r n_{EP} \)

\(D_{\text{micro}}\) is the effective background diffusion coefficient from the Angioni quasilinear model\(^2\) fit to GYRO.

Critical gradient as a function of \(r\) determined by TGLFEP, the crucial input.

Boundary condition: Edge \(n_{EP}\) is set to zero (pessimistic edge loss estimate).

\[
S = n_D n_T \langle \sigma v \rangle_{DT}
\]

\[
n_{SD} = \int_0^\infty S \tau_s \frac{\Theta(E_a - E)}{2} \frac{E^{3/2}}{E_c^{3/2} + E^{3/2}} E^{1/2} dE
\]

\^Gaffey 1976

\(^1\text{E.M. Bass and R.E. Waltz, PoP 17 112319 (2010)}\)

\(^2\text{Angioni and Peters, PoP 15 052307 (2008)}\)
TGLFEP code uses the gyro-Landau fluid TGLF model to find the AE-EP critical gradient where $\gamma_{AE} \rightarrow 0$.

Using a high-temperature equivalent Maxwellian, TGLF (gyro-Landau fluid) matches GYRO (gyrokinetic) AE growth rates well, but is \textbf{>100 times cheaper}.

\cite{He2017}
TGLFEP code uses the gyro-Landau fluid TGLF model to find the AE-EP critical gradient where $\gamma_{AE} \rightarrow 0$

Using a high-temperature equivalent Maxwellian, TGLF (gyro-Landau fluid) matches GYRO (gyrokinetic) AE growth rates well, but is \textbf{>100 times cheaper}.

\textbf{TGLFEP}1: A parallelized wrapper that searches across mode number and drive strength for the critical gradient.

1He Sheng, R.E. Waltz, and G.M. Staebler, PoP \textbf{24}, 072305 (2017)
The model is extended to include simultaneous drive of multiple EP species

The multi-species criticality condition (in terms of each EP pressure p_i) appears as a weighted sum.

\[\sum_i \frac{dp_i}{dr} \geq (dp_i/dr)_{\text{crit}} \]

\(^1\)He Sheng, R.E. Waltz, and G.M. Staebler, PoP 24, 072305 (2017)
The model is extended to include simultaneous drive of multiple EP species

The multi-species criticality condition (in terms of each EP pressure p_i) appears as a weighted sum.

$$\sum_i \frac{dp_i / dr}{(dp_i / dr)_{crit}} \geq 1$$

1He Sheng, R.E. Waltz, and G.M. Staebler, PoP 24, 072305 (2017)
The model is extended to include simultaneous drive of multiple EP species.

The multi-species criticality condition (in terms of each EP pressure p_i) appears as a weighted sum:

$$\sum_i \frac{dp_i}{dr} / (dp_i / dr)_{\text{crit}} \geq 1$$

1He Sheng, R.E. Waltz, and G.M. Staebler, PoP 24, 072305 (2017)
The model is extended to include simultaneous drive of multiple EP species.

The multi-species criticality condition (in terms of each EP pressure p_i) appears as a weighted sum:

$$\sum_i \frac{dp_i}{dr} \geq 1$$

The two isolated critical gradients specify the two-species critical gradient for coupled transport.

1He Sheng, R.E. Waltz, and G.M. Staebler, PoP 24, 072305 (2017)
The model is extended to include simultaneous drive of multiple EP species.

The multi-species criticality condition (in terms of each EP pressure p_i) appears as a weighted sum:

$$\sum_i \frac{dp_i}{dr} \geq 1$$

In other words: AEs driven by NBI ions drive additional alpha particle transport, and vice versa.

1He Sheng, R.E. Waltz, and G.M. Staebler, PoP 24, 072305 (2017)
Outline

I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
We consider a 30 MW $Q \approx 10$ ITER profile prediction based on EPED1 and tGYRO TGLF core transport\(^1\)

\[n_{i,e} \]

\[n_{\text{alpha,SD}} \]

\[n_{\text{NBI,SD}} \]

\[100n \]

\[r/a (\text{to pedestal top}) \]

\(^1\) J. Kinsey, G.M. Staebler, J. Candy, R.E. Waltz, and R. Budny, Nucl. Fusion 51, 083001 (2011)
We consider a 30 MW $Q\approx 10$ ITER profile prediction based on EPED1 and tGYRO TGLF core transport\(^1\)

\[n_{i,e} \]

\[n_{\alpha,SD} \]

\[T_e \]

\[T_i \]

\[0.01T_{\alpha} \]

\[0.05T_{NBI} \]

\[20n_{NBI,SD} \]

\[100n_{\alpha,SD} \]

\[n \left(10^{19}/m^3\right) \]

\[r/a \text{ (to pedestal top)} \]

\[T \text{ (keV)} \]

\[r/a \text{ (to pedestal top)} \]

\(^1\) J. Kinsey, G.M. Staebler, J. Candy, R.E. Waltz, and R. Budny, Nucl. Fusion 51, 083001 (2011)
We consider a 30 MW $Q \approx 10$ ITER profile prediction based on EPED1 and tGYRO TGLF core transport1

EP β fraction of about 30% \rightarrow AEs robustly unstable
We consider a 30 MW $Q \approx 10$ ITER profile prediction based on EPED1 and tGYRO TGLF core transport1

1J. Kinsey, G.M. Staebler, J. Candy, R.E. Waltz, and R. Budny, Nucl. Fusion 51, 083001 (2011)

EP β fraction of about 30\% \rightarrow AEs robustly unstable
We consider a 30 MW $Q \approx 10$ ITER profile prediction based on EPED1 and tGYRO TGLF core transport\(^1\)

Figure 1:
- Left panel: Profile of $n_{i,e}$, $20n_{\text{NBI,SD}}$, and $100n_{\alpha,\text{SD}}$.
- Right panel: Plots of T_e, T_i, $0.05T_{\text{NBI}}$, $0.01T_{\alpha}$.

EP β fraction of about 30% → AEs robustly unstable.

Very weak central shear region (from sawtooth current mixing) proves to be the most AE unstable for the base case scenario with maximum current drive and current penetration.

\(^1\) J. Kinsey, G.M. Staebler, J. Candy, R.E. Waltz, and R. Budny, Nucl. Fusion 51, 083001 (2011)
As in 2015 GYRO ITER simulations1, TGLFEP finds unstable AEs only in the mid core where $-\frac{dn}{dr_{SD}} > -\frac{dn}{dr_{\text{crit}}}$.

\begin{figure}
 \centering
 \includegraphics[width=\textwidth]{ITER_base_case}
 \caption{ ITER base case}
\end{figure}

1R.E. Waltz, E.M. Bass, W.W. Heidbrink, and M.A. VanZeeland, Nucl. Fusion \textbf{55}, 123012 (2011)
As in 2015 GYRO ITER simulations\(^1\), TGLFEP finds unstable AEs only in the mid core where \(-\frac{dn}{dr}_{SD}<-\frac{dn}{dr}_{crit}\).

\[\text{Alpha particles} \]

\[\text{ITER base case} \]

\[\text{NBI ions} \]

\begin{footnotesize}
\(^1\text{R.E. Waltz, E.M. Bass, W.W. Heidbrink, and M.A. VanZeeland, Nucl. Fusion 55, 123012 (2011)}\)
\end{footnotesize}
As in 2015 GYRO ITER simulations\(^1\), TGLFEP finds unstable AEs only in the mid core where \(-\frac{dn}{dr_{SD}} > \frac{dn}{dr_{crit}}\)

\[\frac{dn}{dr_{SD}}\]

\[\frac{dn}{dr_{crit}}\]

Alpha particles

ITER base case

Nominally unstable region

As in 2015 GYRO ITER simulations\(^1\), TGLFEP finds unstable AEs only in the mid core where \(-\frac{dn}{dr_{SD}} > -\frac{dn}{dr_{crit}}\).

\[\frac{dn}{dr_{SD}}\]
\[\frac{dn}{dr_{crit}}\]

Alpha particles

Nominally unstable region

Transport of EPs by background processes, through Angioni quasilinear ratio \(\chi_{EP}/\chi_i\), depletes core into the “hole” made by CGM AE transport.

Coupled alpha and NBI drive nearly doubles confinement loss from mid core. Net edge loss is small!

- Classical Alphas volume-integrated birth rate
- Classical NBI volume-integrated birth rate
- NBI particle flow
- Classical Alphas density
Coupled alpha and NBI drive nearly doubles confinement loss from mid core. Net edge loss is small!

\(n (10^{19}/m^4) \)

Alphas

classical

self

Net edge loss is small!

\(n (10^{19}/s) \)

particle flow

volume-integrated birth rate

self

Each EP species drives only its own transport
Coupled alpha and NBI drive nearly doubles confinement loss from mid core. Net edge loss is small!

Mid-core AEs redeposit EPs outward

self: Each EP species drives only its own transport
Coupled alpha and NBI drive nearly doubles confinement loss from mid core. Net edge loss is small!

Mid-core AEs redeposit EPs outward

self: Each EP species drives only its own transport

EPs redistributed from **inner core to outer core**
- alphas
- NBI ions

self: 14.1% 23.1%
Coupled alpha and NBI drive nearly doubles confinement loss from mid core. Net edge loss is small!

Mid-core AEs redeposit EPs outward

self: Each EP species drives only its own transport

coupled: Simultaneous drive transports both species.

EPs redistributed from **inner core to outer core**

<table>
<thead>
<tr>
<th></th>
<th>alphas</th>
<th>NBI ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>self:</td>
<td>14.1%</td>
<td>23.1%</td>
</tr>
<tr>
<td>coupled:</td>
<td>23.5%</td>
<td>37.3%</td>
</tr>
</tbody>
</table>
Coupled alpha and NBI drive nearly doubles confinement loss from mid core. Net edge loss is small!

Outside AE-unstable region (center and edge) flux comes from background transport component.

Mid-core AEs redeposit EPs outward

self: Each EP species drives only its own transport

coupled: Simultaneous drive transports both species.

EPs redistributed from *inner core to outer core*

<table>
<thead>
<tr>
<th></th>
<th>alphas</th>
<th>NBI ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>14.1%</td>
<td>23.1%</td>
</tr>
<tr>
<td>coupled</td>
<td>23.5%</td>
<td>37.3%</td>
</tr>
</tbody>
</table>
High q and low shear are destabilizing, but shear is more important.

$$n \left(10^{19}/m^4\right)$$

$$\text{classical}$$

$$\text{volume integrated birth rate}$$

$$q$$

$$r/a$$

Base case
High q and low shear are destabilizing, but shear is more important

Steady-state (non-inductive current drive) case has 7.5 MA (half base-case value) current and weak penetration.
High q and low shear are destabilizing, but shear is more important

Steady-state (non-inductive current drive) case has 7.5 MA (half base-case value) current and weak penetration.

Low shear hurts both the steady-state and base cases.
High q and low shear are destabilizing, but shear is more important.

Steady-state (non-inductive current drive) case has 7.5 MA (half base-case value) current and weak penetration.

Low shear hurts both the steady-state and base cases.

As current pushes inward, AE instability and transport reduce in the center.
High q and low shear are destabilizing, but shear is more important

Steady-state (non-inductive current drive) case has 7.5 MA (half base-case value) current and weak penetration.

Low shear hurts both the steady-state and base cases.

As current pushes inward, AE instability and transport reduce in the center.
High q and low shear are destabilizing, but shear is more important.

Steady-state (non-inductive current drive) case has 7.5 MA (half base-case value) current and weak penetration.

Low shear hurts both the steady-state and base cases.

As current pushes inward, AE instability and transport reduce in the center.
High q and low shear are destabilizing, but shear is more important

Steady-state (non-inductive current drive) case has 7.5 MA (half base-case value) current and weak penetration.

Low shear hurts both the steady-state and base cases.

As current pushes inward, AE instability and transport reduce in the center.
I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
Summary:
TGLFEP+ALPHA reduced model code ITER predictions

- The TGLFEP+ALPHA reduced model robustly predicts **EP redistribution from the mid core to the outer core**, but with minimal net edge loss.

- Reductions in ITER current (increased q) or current penetration (increased q_{min} with lower core shear) increase mid-core confinement loss.

- Tailoring the current profile to raise central-core shear offers a promising control knob for **reducing AE-driven mid-core EP confinement losses in ITER**.

Going forward:

- Estimation of **mode intermittency**, needed to predict peak heat flux (instead of time average)

- Deploy **TGLFEP+ALPHA model into the AToM2 whole-device modeling project** for use by broader community

- Adjust inputs considering **broadened heating and current deposition profiles** in an integrated modeling feedback loop
Summary:
TGLFEP+ALPHA reduced model code ITER predictions

- The TGLFEP+ALPHA reduced model robustly predicts **EP redistribution from the mid core to the outer core**, but with minimal net edge loss.

- Reductions in ITER current (increased q) or current penetration (increased q_{min} with lower core shear) increase mid-core confinement loss.

- Tailoring the current profile to raise central-core shear offers a promising control knob for **reducing AE-driven mid-core EP confinement losses in ITER**.

Going forward:

- Estimation of **mode intermittency**, needed to predict peak heat flux (instead of time average)

- Deploy **TGLFEP+ALPHA model into the AToM2** whole-device modeling project for use by broader community

- Adjust inputs considering **broadened heating and current deposition profiles** in an integrated modeling feedback loop
The ALPHA model neglects much physics but retains experimental relevance.

A DIII-D tilted NBI experiment\(^1\) moving the NBI from on-axis to off-axis had virtually no effect on the measured beam ion profile.

EP pressure profile prediction from the ALPHA critical-gradient model is well validated by experiment\(^1\) and verified against nonlinear GYRO simulations\(^2\).

\(^1\)R.E. Waltz and E.M. Bass, Nucl. Fusion 55 123012 (2015)
The AE stiff-transport critical gradient can be identified with a simple linear stability condition

A careful nonlinear, gyrokinetic study (using GYRO) of DIII-D discharge 146102 shows runaway over a critical EP gradient\(^1\).

\(\gamma_{AE-ITG/TEM}\)
- EP+thermal drive on AEs

\(\gamma_{AE}\)
- only EP drive on AEs

\(\gamma_{ITG/TEM}\)
- leading microturbulent growth rate

Runaway onset at \(\gamma_{AE+ITG/TEM} = \gamma_{ITG/TEM}\) is due to suppression of AEs by microturbulence-driven zonal flows.

By luck, the much simpler condition \(\gamma_{AE} = 0\) works just as well, allowing us to take microturbulence out of the critical gradient analysis (but not transport).

\(^1\)Bass and Waltz, PoP 24, 122303 (2017)
Inexpensive, automated TGLFEP confirms shear and elongation are stabilizing, higher q is destabilizing.

The linear stability threshold (synonymous with the critical gradient absent thermal drive) spans at least three orders of magnitude for experimentally relevant parameters.

Empirical scaling of the critical EP gradient:\footnote{He Sheng et al., PoP 24, 072305 (2017)}

q profile dependence

Stronger elongation is also generally stabilizing.

But... Most transport occurs at very low shear, where q scaling is much weaker.

We will see that the q profile matters surprisingly little in practice.