Predictions of alpha-particle and neutral-beam heating and transport in ITER scenarios

E.M. Bass\(^1\) and R.E. Waltz\(^2\)

\(^1\)UC San Diego
\(^2\)General Atomics

Acknowledgements: G. M. Staebler (GA), He Sheng (PKU)

Presented at
2018 IAEA Fusion Energy Conference
Ahmedabad, Gujarat, India

October 22 – 27, 2018

Supported by US DOE GSEP-SciDAC
Computations performed at NERSC
Outline

I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
Main takeaway: The local critical-gradient model (CGM) of AE transport of EPs shows redistribution from mid to outer core in ITER.

Mid-core AEs redeposit EPs to the outer radii where their energy is absorbed.

Time-averaged EP density profile corresponds directly to the heating profile.
I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

A quick primer on EP-transport jargon:

EPs: Energetic particles (fast ions). Fusion-sourced alpha particles or neutral beam injection (NBI) ions (deuterium).

AEs: Alfvén eigenmodes. Alfvén frequency MHD modes. EP kinetic drive and transport. Different flavors (RSAE, TAE, BAE, BAAE, EPM, etc.), don’t matter here.

AEs drive most EP transport, mainly in the particle channel (i.e. transport is convective).
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

EPs have large orbits relative to thermal species, leading to:

Sparse spectrum and high coherency:
- Intermittent transport, depending on global resonance intersections
- Saturation sensitive to stochastic processes (e.g., collisions, microturbulence)
- Formation of BGK bucket modes (frequency chirping)
EP transport by so-called “Alfvén eigenmodes” (AEs) can be very complicated

So how dangerous are EP-driven AEs in ITER and other devices?

It’s complicated!

EPs have large orbits relative to thermal species, leading to:

- Sparse spectrum and high coherency:
 - Intermittent transport, depending on global resonance intersections
 - Saturation sensitive to stochastic processes (e.g., collisions, microturbulence)
 - Formation of BGK bucket modes (frequency chirping)

We need reduced models to get useful transport estimates.

Here, we focus on the ALPHA critical-gradient model, probably the simplest and most nimble in use.
Outline

I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
The 1D ALPHA EP density transport code uses the stiff critical gradient model based on local nonlinear 2010 GYRO simulations\(^1\)

ALPHA transport EP continuity equation

\[
\frac{\partial n_{EP}}{\partial t} = S \left(1 - \frac{n_{EP}}{n_{SD}} \right) - \nabla \cdot \Gamma_{EP} \rightarrow 0
\]

- **fusion or beam source**
- **slowing-down sink** (plasma heating)

Diffusive EP flux:

\[
\Gamma_{EP} = - \left(D_{micro} + D_{AE} \right) \nabla r n_{EP}
\]

\(D_{micro}\) is the effective background diffusion coefficient from the Angioni quasilinear model\(^2\) fit to GYRO.

Boundary condition: Edge \(n_{EP}\) is set to zero (pessimistic edge loss estimate).

\[
S = n_D n_T \langle \sigma v \rangle_{DT}
\]

- **fusion source**
- **classical slowing-down density**

\[
n_{SD} = \int_0^\infty \tau_s \frac{\Theta(E_a - E)}{2} \frac{E^{3/2}}{E_c^{3/2}} + E^{3/2} \ E^{1/2} \ dE
\]

Gaffey 1976

AE transport level is part of solution

most unstable \(n\) critical gradient

\[D_{micro} + D_{AE} (AU)\]

\[D_{micro} + D_{AE} (AU)\]

Critical gradient as a function of \(r\) determined by TGLFEP, the crucial input.

\(^1\)E.M. Bass and R.E. Waltz, PoP 17 112319 (2010)
\(^2\)Angioni and Peters, PoP 15 052307 (2008)
TGLFEP code uses the gyro-Landau fluid TGLF model to find the AE-EP critical gradient where $\gamma_{AE} \rightarrow 0$

Using a high-temperature equivalent Maxwellian, TGLF (gyro-Landau fluid) matches GYRO (gyrokinetic) AE growth rates well, but is >100 times cheaper.

TGLFEP: A parallelized wrapper that searches across mode number and drive strength for the critical gradient.

1He Sheng, R.E. Waltz, and G.M. Staebler, PoP **24**, 072305 (2017)
The model is extended to include simultaneous drive of multiple EP species

The multi-species criticality condition (in terms of each EP pressure p_i) appears as a weighted sum.

\[
\sum_i \frac{dp_i}{dr} \geq 1
\]

In other words: AEs driven by NBI ions drive additional alpha particle transport, and vice versa.

1. He Sheng, R.E. Waltz, and G.M. Staebler, PoP 24, 072305 (2017)
I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
We consider a 30 MW $Q \approx 10$ ITER profile prediction based on EPED1 and tGYRO TGLF core transport1

Very weak central shear region proves to be the most AE unstable for the base case scenario with maximum current drive and current penetration.

As in 2015 GYRO ITER simulations\(^1\), TGLFEP finds unstable AEs only in the mid core where \(-\frac{dn}{dr}_{SD}>-\frac{dn}{dr}_{crit}\).

Transport of EPs by background processes, through Angioni quasilinear ratio \(\chi_{EP}/\chi_{i}\), depletes core into the “hole” made by CGM AE transport.

Coupled alpha and NBI drive nearly doubles confinement loss from mid core. Net edge loss is small!

Outside AE-unstable region (center and edge) flux comes from background transport component.

Mid-core AEs redeposit EPs outward

self: Each EP species drives only its own transport

coupled: Simultaneous drive transports both species.

EPs redistributed from inner core to outer core

<table>
<thead>
<tr>
<th>Type</th>
<th>Self</th>
<th>Coupled</th>
</tr>
</thead>
<tbody>
<tr>
<td>alphas</td>
<td>14.1%</td>
<td>23.1%</td>
</tr>
<tr>
<td>NBI ions</td>
<td>23.5%</td>
<td>37.3%</td>
</tr>
</tbody>
</table>
High q and low shear are destabilizing, but shear is more important

Steady-state (non-inductive current drive) case has 7.5 MA (half base-case value) current and weak penetration.

Low shear hurts both the steady-state and base cases.

As current pushes inward, AE instability and transport reduce in the center.
Outline

I. Introduction: Energetic Particle (EP) transport by Alfvén eigenmodes (AEs) and the need for reduced models

II. TGLFEP + ALPHA code: A flexible and inexpensive 1D EP transport model

III. Predictions for ITER scenarios for burning plasmas with beam heating

IV. Summary
Summary: TGLFEP+ALPHA reduced model code ITER predictions

- The TGLFEP+ALPHA reduced model robustly predicts **EP redistribution from the mid core to the outer core**, but with minimal net edge loss.

- Reductions in ITER current (increased q) or current penetration (increased q_{min} with lower core shear) increase mid-core confinement loss.

- Tailoring the current profile to raise central-core shear offers a promising control knob for **reducing AE-driven mid-core EP confinement losses in ITER**.

Going forward:

- Estimation of **mode intermittency**, needed to predict peak heat flux (instead of time average)

- Deploy **TGLFEP+ALPHA model into the AToM2** whole-device modeling project for use by broader community

- Adjust inputs considering **broadened heating and current deposition profiles** in an integrated modeling feedback loop
The ALPHA model neglects much physics but retains experimental relevance

A DIII-D tilted NBI experiment\(^1\) moving the NBI from on-axis to off-axis had virtually no effect on the measured beam ion profile.

EP pressure profile prediction from the ALPHA critical-gradient model is well validated by experiment\(^1\) and verified against nonlinear GYRO simulations\(^2\).

\(^1\)R.E. Waltz and E.M. Bass, Nucl. Fusion \textbf{55}, 123012 (2015)
The AE stiff-transport critical gradient can be identified with a simple linear stability condition

A careful nonlinear, gyrokinetic study (using GYRO) of DIII-D discharge 146102 shows runaway over a critical EP gradient\(^1\).

Runaway onset at \(\gamma_{AE+ITG/TEM} = \gamma_{ITG/TEM}\) is due to suppression of AEs by microturbulence-driven zonal flows.

By luck, the **much simpler condition** \(\gamma_{AE} = 0\) works just as well, allowing us to take microturbulence out of the critical gradient analysis (but not transport).

\(^1\)Bass and Waltz, PoP 24, 122303 (2017)
Inexpensive, automated TGLFEP confirms shear and elongation are stabilizing, higher q is destabilizing.

The linear stability threshold (synonymous with the critical gradient absent thermal drive) spans at least three orders of magnitude for experimentally relevant parameters.

Empirical scaling of the critical EP gradient1.

q profile dependence

Stronger elongation is also generally stabilizing.

But... Most transport occurs at very low shear, where q scaling is much weaker. We will see that the q profile matters surprisingly little in practice.

1He Sheng et al., PoP 24, 072305 (2017)