

Progress of CFETR Design

Ge Zhuang¹, <u>Guoqiang Li²</u>, J. Li², Y.X. Wan^{1,2}, Y. Liu³, X.L. Wang⁴, Y.T. Song², V. Chan¹, Q.W. Yang³, B.N. Wan², X.R. Duan³, and CFETR design team

¹University of Science and Technology of China, Hefei, China ²Institute of Plasma Physics, CAS, Hefei, China

³Southwest Institute of Physics, Chengdu, China

⁴Chinese Academy of Physics Engineering, Mianyang, China

27th IAEA Fusion Energy Conference, Ahmedabad, India 22-27 October 2018

China MCF Roadmap

27th IAEA FEC, Ahmedabad

- Fusion power production of P_f = 200~1500 MW
- Generates steady-state burning plasmas (duty time ~ 50%)
- Tests the self-sustainable burning ($Q \ge 25 \sim 30$, H $\alpha \sim 83 \cdot 86\%$)
- Realizes Tritium self-breading (TBR \geq 1)
- R&D for structural and functional materials which have high neutron flux resistive

Buildup the science and technology base for PFPP

- Concept design (2011-2017)
 - First period (2011-2015)

 $R = 5.7 \text{ m}, a = 1.6 \text{ m}, B_T = 4-5 \text{ T}, P_f = 200 \text{ MW}$

- Second period (2015-2017)

R = 6.6 m, a = 1.8 m, B_T = 5–7 T, P_f = 1 GW

- Integrated engineering design (2017-, 30 M\$)
 - New version

 $R = 7.2 \text{ m}, a = 2.2 \text{ m}, BT = 6.5 \text{ T}, P_f = 200 \text{ MW} - 1 \text{ GW}$

- Small scale R&D continues (70 M\$)
- Large scale R&D will start soon (500 M\$)

Outline

- Introduction
 - New version of CFETR design
- CFETR Physics Design
 - Development of operation scenarios
 - Consideration of divertor conf. & impurity effects
 - Investigation of MHD stability
- CFETR Engineering Design
 - Magnet system
 - Vacuum system
 - Remote handling and maintenance system
 - Others...
- Summary

Outline

- Introduction
 - New version of CFETR design
- CFETR Physics Design
 - Development of operation scenarios
 - Consideration of divertor conf. & impurity effects
 - Investigation of MHD stability
- CFETR Engineering Design
 - Magnet system
 - Vacuum system
 - Remote handling and maintenance system
 - Others...
- Summary

New version of CFETR design

Key parameters	
Major Radius R ₀	7.2 m
Minor Radius a	2.2 m
Elongation	2
Toroidal B Field B_T	6.5 T
Plasma Current Ip	14 MA
Divertor Conf.	Lower Single Null

• Some new features of CFETR design

- Higher B_T, Lower I_p, Advanced CS (\geq 480 VS), 16 TF coils for easy RH \rightarrow More reliable plasma targets and higher confidence

- CFETR operation plan (Staged approach)
 - H/He: 1-2 years
 - DD: 1-2 years
 - DT: < 100 MW : 1 years

200 MW, SSO, T fuel cycle, 5 years 500 MW, SSO, TBR > 1, 3 years

- DT: DEMO validation, 1 GW, 5 years

Advance Scenario, > 1.5 GW , Q~30, 2-3 years

- Total: ~ 20 years

Outline

- Introduction
 - New version of CFETR design
- **CFETR Physics Design**
 - Development of operation scenarios
 - Consideration of divertor conf. & impurity effects
 - Investigation of MHD stability
- CFETR Engineering Design
 - Magnet system
 - Vacuum system
 - Remote handling and maintenance system
 - Others...
- Summary

- CFETR physics design mainly focuses on development and optimization of the operating scenarios with respect to physics and engineering constraints
- Operating scenarios will
 - Predict the fusion performance
 - Explore and determine a robust operation space possessing good confinement, MHD stability and acceptable transport level
 - Evaluate and limit the fraction of helium and other impurity particles while approaching the desirable fusion performance

- Size up the power and particle exhaust compatibility with the chosen divertor configuration

- Assess and manipulate the transit and steady heat load to the first wall and divertor to keep the machine safety

- ...

- 0D system code used to scope out parameter space
 - Provides 0^{th} order engineering parameters e.g. R, a, I_P , B_T
 - Consistent set of H_{98}, $\beta_{\rm N}$, f_{\rm BS}, etc. for target Q_{fus}, P_{fus}
 - Ballpark estimates of P_{aux}
 - Does not identify actual operating scenario
- Integrated Modeling (IM) used for scenario development
 - Physics-based models, beyond experimental scaling laws
 - Reproducing experimentally demonstrated scenarios
 - Ensuring consistency of core, pedestal and boundary
- IM informs key engineering design requirements
 - H&CD, Divertor heat and particle fluxes, fueling
 - Plasma control and disruption mitigation
- IM critical to CFETR diagnostics design and operation
 - Provides best-guess, hard to measure profile information

Code Suites for Multi-physics Modeling

- Core-pedestal coupling for scenario design
 - A workflow was developed under the framework **OMFIT**
- SOL and divertor SOLPS, OEDGE/DIVIMP, ...
- MHD stability NIMROD, MARS-F, AEGIS, GATO ...
- Energetic particle NOVA-K, M3D, ORBIT ...
- Pedestal Ana. & Opt. ELITE, BOUT++ ...
- Plasma shape design TEQ, EFIT
- Discharge simulation TSC, TOKSYS

- Evolving particle densities, T_e and T_i, and momentum
 - ne/He/impurity profiles evolved and D&T obey quasi-neutrality
- SOL solutions match core parameters at pivot point ~ top of pedestal
 - Heat and particle fluxes, iterate boundary densities and temperatures

Fully Non-inductive Operation Scenario Designed with System Code (0D)

CFETR fully non-induct.	Parameters	A.1	A.2	A.2	A.3	A.4
R=7.2m, a=2.2m, κ =2		100MW	200MW	500MW	1GW	DEMO-level
fusion power	P _f	120	229	482	974	2192
power to run plant	P _{internal}	199	196	223	238	265
Pfusion/Paux	Q _{plasma}	1.56	3.06	5.87	11.89	28.17
net electric power	P _{netelec}	-107	-58	30	232	738
Neutron Power at Blanket	P _n /A _{wall}	0.12	0.23	0.49	0.99	2.23
normalized beta	β _N	1.00	1.20	1.50	2.0	3.0
bootstrap fraction	f _{bs}	0.40	0.40	0.40	0.50	0.75
H factor over ELMY H_net	H _{ITER98Y2}	1.12	1.25	1.32	1.41	1.42
current drive power	P _{cd}	77	75	82	82	78
plasma current	l _p	8.61	10.34	12.92	13.78	
field on axis	B _T	6.5	6.5	6.5	6.5	<mark>6</mark> .5
Ion/electron Temperature	$T_{i}(0)/T_{e}(0)$	18	24	32	36	32
Electron Density	n(0)	0.48	0.52	0.61	0.78	1.31
Ratio to Greenwald Limit	n _{bar} /n _{GR}	0.57	0.51	0.48	0.57	0.96
Zeff	Z _{eff}	2.45	2.45	2.45	2.45	2.45
Power per unit R	P/R	8.52	9.42	11.66	15.69	30.70
q95_lter	q _{95_iter}	8.87	7.39	5.91	5.54	5.54

1GW Non-inductive Operation Scenario by Core-Pedestal Coupling Simulation

• Preliminary results

- No self-consistent tritium fueling
- Deviation (~30% for $\mathsf{P}_{\mathsf{aux}})$ VS system code

- NBI → 500 keV (68 MW,CD) + 100 keV (10 MW, rotation drive)
- EC → maintain large radius RS and control q_{min} > 2 to avoid low n deleterious MHD modes
- Large BS current → RS and reduce CD power requirement
- Moderate q₉₅

	Simulation	Sys. Code
P _f (GW)	1.0	0.97
Q	9.1	11.9
P _{EC} /P _{NB}	31/78	82(tot)
$\beta_{N,th}(\beta_{N,tot})$	2.05(2.36)	2.0(~)
H _{ITER98Y2}	1.11	1.41
f _{bs} (%)	59	50
lp (MA)	12	14
I _{NB} /I _{EC} (MA)	4.0/0.9	~

Oct. 23 2018

Hybrid Operation Scenario Designed with System Code (0D)

CFETR Hybrid Mode R=7.2m, a=2.2m, κ =2	Parameters	B.1 100MW	B.2 200MW	B.2 500MW	B.3 1GW	B.4 DEMO-level
fusion power	P _f	114	250	558	1128	2192
power to run plant	P _{internal}	190	196	202	222	75
Pfusion/Paux	Q _{plasma}	1.54	3.35	7.65	15.30	795.16
Neutron Power at Blanket	P _n /A _{wall}	0.12	0.25	0.57	1.15	2.23
normalized beta	β _N	1.00	1.20	1.50	2.00	3.0
bootstrap fraction	f _{bs}	0.40	0.40	0.40	0.50	0.75
H factor over ELMY H_net	H _{ITER98Y2}	1.01	1.09	1.18	1.19	1.54
Ohmic fraction	f _{ohm}	0.30	0.30	0.30	0.30	0.24
current drive power	P _{cd}	74	74	73	74	3
plasma current	l _p	8.61	10.34	12.92	13.78	13.78
field on axis	B _T	6.5	6.5	6.5	6.5	6.5
Ion/electron Temperature	T _i (0)/T _e (0)	13	17	24	24	34
Electron Density	n(0)	0.67	0.74	0.82	1.16	1.23
Ratio to Greenwald Limit	n _{bar} /n _{GR}	0.79	0.72	0.64	0.85	0.90
Zeff	Z _{eff}	2.45	2.45	2.45	2.45	2.45
Power per unit R	P/R	7.58	9.33	12.63	19.11	22.97
q95 Iter	q _{95 iter}	8.87	7.39	5.91	5.54	5.54

1GW Hybrid Operation Scenario by Core-Pedestal Coupling Simulation

Preliminary result

- No self-consistent tritium fueling
- Deviation (~25% for $\mathsf{P}_{\mathsf{aux}})$ VS system

- NBI → 1 MeV (32 MW,CD) + 600 keV (11 MW, CD & rotation drive)
- EC → maintain flat q profile and control q_{min} > 1
- Moderate li → plasma stability
- ~300 Volt-sec (8-hours in flattop)

	Simulation	Sys. code
P _f (GW)	0.92	1.1
Q	10	15
$P_{ec}/P_{FW}/P_{NB}$	30/20/43	74(tot)
$\beta_{N,th}(\beta_{N,tot})$	2.09(2.3)	2.0(~)
H _{ITER98Y2}	1.16	1.19
f _{bs} (%)	49	50
lp (MA)	13	14
I _{NB} /I _{EC} /I _{FW} /I _{OH}	1.4/0.8/1.6/3	~/~/~/4

- EC: necessary tool for current profile control
 - Optional freq/power: 190 GHz ~ 250 GHz, 20 ~ 40 MW
 - HFS top launched with high freq. for efficient off-axis ECCD
 - LFS above midplane for flexible location of ECCD
 - Optional application in NTM control
- LH: efficient far off-axis current drive
 - Optional freq/power: 4.6 GHz or beyond, ~20 MW
 - HFS launched above midplane (adapting for toroidal field along counter-clockwise direction) for CD at $r/a \ge 0.7$
- HHFW: efficient off-axis or near-axis current drive
 - Optional freq/power: 0.8 ~ 2 GHz, ~20 MW
 - Optional launched positions: HFS, LFS
 - High CD efficiency at r/a < 0.6
- NB: broad current drive and possible significant rotation drive
 - Option for CD: 600 keV ~ 1 MeV NNBI, 16 ~ 32 MW, (1 ~ 2 beam)
 - Option for rotation drive: 100 keV PNBI, 10 MW, (1 beam)

Considerations of Plasma Shape and Divertor

- ITER-like plasma configuration κ_{sep} =2.0, δ_u = 0.39, δ_l = 0.45
- A divertor coil (DC1) is added for possible advanced divertor configuration (Snowflake+)

- Plasma-facing Materials (W)^{2.0}
- Different Divertor configurations
 - -Conventional
 - -Small Angle Slot (SAS)
 - -Snowflake+
- Optimization target
 −P_{peak} ≤ 10 MW/m²
 - $-T_e \le 5-10 \text{ eV}$
 - $-n_{e-sep} \le 5 \times 10^{19} \text{ m}^{-3}$
 - $-Z_{\text{eff-ped}} \leq 3$

8.5

Ar Injection Can Effectively Reduce the Divertor Heat Load to below 10 MW/m²

6.5

- Simulation performed with SOLPS code
- The peak heat fluxes on both inner and outer divertor are below 10 MW/m²
- Total radiation is higher than 80%, mainly by Ar impurities
- Detachment occurs at the strike points, but still too high T_e in far SOL region
- Fueling dilution and fusion performance degradation in core region should be carefully concerned for high radiation scenarios

Blanket has strong stabilization effect on vertical instability

- Simulations are performed with TSC and TOKSYS codes
- Blanket modules (BM) are modeled with three-layer structures. Resistivity is evaluated and scanned
- **Calculations show BM could** significantly reduce the growth rate

Passive stru included	VV	VV + BM (7.6×10 ⁻⁷ ohm*m)	VV + BM (7.6×10 ⁻⁶ ohm*m)
Growth rate of VD (/s)	Out of control	2.2	18.1

Internal coils are still necessary to control the vertical instability. It is under assessment hmedabad

Operation in Grassy ELM regime?

Oyama N. 2008 J. Phys.: Conf. Ser.

- Type-I ELM must be avoided
- Mostly likely, RMP coils will not be installed
- According to experimental data classification, β_p and v^* from EPED1 for the reference scenario put it in the grassy ELM regime
- BOUT++ and other codes are being used to verify the ELM prediction

Resistive Wall Mode Should be Stable for the Steady-state Scenario

- MARS-K has been used to calculate the stability of RMWs, with uniform rotation
- The steady-state scenario is marginally unstable
- A small rotation of $\Omega_0 / \Omega_A < 0.01$ could make the RMW stable

α particle drive is weakly destabilizing for TAE and RSAE in steady state scenario

250

200

[zHx] f

50

-- m=9

m=10

m=11

m=12

m=13

- -

n=3 (AWEAC)

- Linear calculations show the α particle drive weakly destabilizing
- **NOVA-K** shows the damp effects could make TAEs and RSAEs marginally stable
- Effects of nonlinear AEs and EPMs are under investigation

n=4 (AWEAC)

-- m=12

m=13

m=14

m=15

m=16 m=1

Outline

- Introduction
 - New version of CFETR design
- CFETR Physics Design
 - Development of operation scenarios
 - Consideration of divertor conf. & impurity effects
 - Investigation of MHD stability
- **CFETR Engineering Design**
 - Magnet system
 - Vacuum system
 - Remote handling and maintenance system
 - Others...
- Summary

CFETR Engineering Design

for internal components, NBI, RF antennas, diagnostics, etc. Blankets, interface between pipe and Blanket, Water cooled breeder blankets, Helium cooled breeder blanket, divertor, etc

Magnet System (Toroidal Field Coils)

Design completed • EM & Stress analysis done

Max Force @TF coil ~736 Mpa; Max. Deformation ~ 16.5 mm

6.5 T @ R = 7.2 m; 174 Turns; 84.6 kA/Turn

Time: 1

572.84

491.01 409.18 327.35 245.52 163.69

81.863

	ITER TF	EU-DEMO ^[2015]	CFETR TF
No. of Coil	18	18	16
Current per Turn	68 kA	81.7 kA	84.6 kA
Total inductance	17.34 H	32.68 H	32.5 H
Total Storage Energy	40.1 GJ	109.08 GJ	116.34 GJ
Storage Energy per Coil	2.227 GJ	6.06 GJ	7.27 GJ

Magnet System (Central Solenoid)

- High temperature superconductor (Bi2212) + low temperature superconductor (Nb₃Sn) → a maximum 19.9 T@ 51.25 kA/turn.
- Each module has 720 turns, powered independently
- Maximum 400 VS flux with a maximum rate of field swing of ~1.2 Ts.

Vacuum system

- Torus with D-shaped cross-section, 4 upper vertical ports, 8 lower ports and 6 equatorial ports
 - 4 upper ports \rightarrow maintenance and disassembly of blanket.
 - 6 lower ports \rightarrow divertor maintenance and the cryo-pumps.
 - 8 equatorial ports \rightarrow NBI, diagnostic and some RH tools.
- Inner, outer shells and stiffening ribs joined by welding.
- Material of the VV is 316L(N)-IG.

Divertor Structure

- Divertor targets divided into two halves on each module, totally 72 divertor modules, each one ~11 tons. RH from lower port
- Cooling water → outer target → inner target → baffles
- Cassette cooled separately → targets/baffles RH separately from Upper ports by Multi-Purpose Deployer

Conceptual engineering design of the CFETR divertor structure.

Progress on the Blanket Design

- Helium cooled ceramic breeder blanket (HCCB) design completed
- Evaluate neutron energy deposition and wall load @ Fusion power = 1 GW, 2 GW
- Start the water cooled ceramic breeder (WCCB) design

Remote Handling & Maintenance

- Blanket RHM: Inboard & outboard blankets → from upper ports by a corridor with a crane → hot cell.
- Divertor RHM: circular movement → lower horizontal port →cask → hot cell.
- MPD : equatorial port → maintenance of small pieces, inspection, diagnosis.

Remote Handling & Maintenance

- Mechanical analysis on RHM of internal components;
- Establish overall control architecture, hardware and software control integration architecture @ Heterogeneous control architecture theory.

NBI

- Based on ITER NBI design, complete preliminary design of N-NBI System, R&D of key technologies of CFETR N-NBI
- Promote research of RF source, high RF power, long pulse ion source
- Achieve substantive results on isolation transformer for RF power transmission

LHW

- Complete preliminary design of low power microwave power source driving circuit, control scheme of power and phase, and Investigate high-power klystron, and auxiliary power equipment
- Carry out high-field coupling and highfield antenna simulation study, R & D of key components of the transmission line

4.6GHz 500kW/CW Klystron model and structure

ECW

- Complete the ECRH system design, R&D of key technologies for Gyrotron
- Start the effectiveness analysis and performance evaluation of ECCD under various conditions (beam injection position, antennas incident parameter, different gyrotron freqs 170GHz, 230GHz)

Helicon Wave

 Start design and analysis antenna of travelling wave

Helicon waves traveling wave antenna module

Traveling wave antenna modules arranged in the blankets, satisfying high power requirements

Outline

- Introduction
 - New version of CFETR design
- CFETR Physics Design
 - Development of operation scenarios
 - Consideration of divertor conf. & impurity effects
 - Investigation of MHD stability
- CFETR Engineering Design
 - Magnet system
 - Vacuum system
 - Remote handling and maintenance system
 - Others...

• Summary

- New design with R = 7.2 m / a = 2.2 m & high B_T .
- Detailed designs of physics and engineering are under the way.
 - Progress of physics design

- Fully non-inductive and hybrid mode scenarios with performance that meets the CFETR mission have been developed

- Broad operation range in β_N and $\beta_{p,}$ stable with wall at r/a = 1.2
- Helium dilution $f_{\rm He}$ cannot exceeds 0.2 to meet $P_{\rm fus}$ target
- Radiation in the core acceptable up to $Z_{\text{eff}} \sim 3$
- Tungsten fraction at the edge can't exceed 4e-5 to stay in H-mode
- Progress of engineering design
 - Concept design of key systems completed, detailed engineering design of the systems ongoing.

CFETR will be fully open to our cooperators, your input in very valuable for the success of the project.

We are grateful to General Atomics, PPPL, LLNL, Wisconsin, U. York, MPG-IPP and U. Toronto for the use of their physics code suites and data, and their helps

Thank you for your attention !