DIII-D Research Towards Establishing the Scientific Basis for Future Fusion Reactors

by
C.C. Petty
for the DIII-D Team

Presented at the
27th IAEA Fusion Energy Conference
Ahmedabad, India

October 22–27, 2018
DIII-D Research Towards Establishing the Scientific Basis for Future Fusion Reactors

1. Advances in Fusion Energy Science

2. Core-Edge Integration

3. Scenario Development
DIII-D Research Towards Establishing the Scientific Basis for Future Fusion Reactors

1. Advances in Fusion Energy Science

2. Core-Edge Integration

3. Scenario Development
First Demonstration of Shell Pellets – a Novel and ITER Relevant Technique for Disruption Mitigation

- Shell pellet transports impurities to core before ablating, releasing impurity payload

Boron-filled diamond shell
3.6mm diameter 40\(\mu\)m thick

“Inside-out” thermal quench mitigation

See N. Eidietis post-deadline
Energetic Electron-Driven Whistler Modes are a Potential Cause of Runaway Electron Dissipation

- HXR pinhole camera measurements of critical E-field threshold are reproduced by modeling when high frequency modes are included
Energetic Electron-Driven Whistler Modes are a Potential Cause of Runaway Electron Dissipation

- HXR pinhole camera measurements of critical E-field threshold are reproduced by modeling when high frequency modes are included.

Plasma waves excited by RE can be used to dissipate RE energy

Whistler modes ($\omega \gg \omega_{ci}$) are directly observed

Paz-Soldan EX/6-1; Thome EX/P6-29; Spong TH/P8-17; Liu TH/P8-16
Reduced-Physics “Kick Model” Accurately Predicts Fast Ion Transport from Tearing Modes and Strong AE Activity

- Using experimental 2/1 island width, kick model in TRANSP replicates measured neutron rate reduction
 - Good agreement also found between kick model and fast ion density profiles from FIDA

Dramatic improvement in predictive simulations of EP transport
Rotation Profile Predicted for ITER With Edge Intrinsic Torque and TGLF Transport has Stabilizing Influence on Turbulent Transport

- DIII-D experiments project ITER edge intrinsic rotation to be 3–10 krad/s (♦)
 - Similar \(\rho^* \) scaling of intrinsic angular momentum is found for ECH and NBI H-mode plasmas

Gyrokinetic simulations find enough \(E \times B \) shear to double the D-T fusion gain in ITER compared to no shear simulations
Energy Transport in Detached Divertors is Carried by Convection

- Flat T_e profiles below 10 eV for detached divertors indicate convection-dominated transport
Energy Transport in Detached Divertors is Carried by Convection

- Flat T_e profiles below 10 eV for detached divertors indicate convection-dominated transport
 - Coherence imaging spectroscopy of C$^{2+}$ confirms M~1 ionization-driven flow from X-point to target
 - Modeling shows $E \times B$ drift contributes significant poloidal transport

Convection expands radiating volume, increasing dissipation for high power devices
E×B Drifts Can Also Drive Step-Like Onset of Divertor Detachment

- UEDGE simulations highlight the nonlinear interaction between E×B drifts and particle fluxes, causing a sudden jump to detachment.
\(E \times B\) Drifts Can Also Drive Step-Like Onset of Divertor Detachment

- UEDGE simulations highlight the nonlinear interaction between \(E \times B\) drifts and particle fluxes, causing a sudden jump to detachment.

\[\text{Experiment}
\]

\[\text{Simulation, UEDGE}
\]

\[\text{Detachment bifurcation makes control of detachment front more challenging}
\]
Energetic D\(^+\) and C\(^{6+}\) from pedestal top dominate W sputtering during ELMs.

W erosion in ITER from ELMs will be mainly caused by T, D ions with pedestal energy.
Outline

1. Advances in Fusion Energy Science
2. Core-Edge Integration
3. Scenario Development
Closed Divertor Exhibits Higher Separatrix Density Relative to Pedestal Density Than Open Divertor

- OEDGE and SOLPS modeling shows closed divertor has ~50% less core ionization

- Closed divertor can maintain high ∇T_e even for large outward shift of ∇n_e

- Closed divertors give insight to pedestal structure with opaque SOL

A. Moser, APS 2018

H. Q. Wang, Nucl. Fusion 2018
New SAS Divertor Concept Demonstrates Improved Divertor Power Dissipation Compatible With Steady-State Tokamaks

- Small angle slot (SAS) divertor transitions to dissipative divertor conditions with $T_e < 10$ eV at lower n_e
New SAS Divertor Concept Demonstrates Improved Divertor Power Dissipation Compatible With Steady-State Tokamaks

- Small angle slot (SAS) divertor transitions to dissipative divertor conditions with $T_e < 10$ eV at lower n_e
- Exhibits better core confinement at high n_e

SAS divertor is “core friendly” with a colder divertor at low core collisionality
Extending $n=3$ RMP ELM Suppression to Low Torque Finds Edge Rotation Threshold of ~10 km/s

- Critical radial location of ω_E rotation zero-crossing (i.e., $E_r=0$) observed at threshold

In ITER, edge rotation to maintain $E_r=0$ in pedestal top for ELM suppression is ≥ 0.4 krad/s (expect 3-10 krad/s from intrinsic torque)
H-Mode Threshold Power Increases More With $n=3$ RMP at Low ν_*
Due to Reduced E_r Well From Edge Stochasticity

- P_{LH} can increase by >50% at ITER-relevant ν_*
 - Of concern for H-mode access in ITER
H-Mode Threshold Power Increases More With $n=3$ RMP at Low ν_* Due to Reduced E_r Well From Edge Stochasticity

- P_{LH} can increase by >50% at ITER-relevant ν_*
 - Of concern for H-mode access in ITER
- Significant reduction in edge E_r well by RMP fields may explain P_{LH} dependence
 - Low-k turbulence (BES) increases with applied RMP

A simple stochastic transport model explains the E_r reversal and its ν_* dependence
In Super H-Mode, High Pedestal Pressure and Core Confinement Can Be Sustained With Strongly Radiating Divertor

- Record fusion gain for DIII-D ($Q_{DT,eq} \approx 0.45$) is transiently achieved
 - Super H-mode occurs in strongly shaped plasmas where pedestal pressure increases with density
In Super H-Mode, High Pedestal Pressure and Core Confinement Can Be Sustained With Strongly Radiating Divertor

- Record fusion gain for DIII-D ($Q_{DT,eq} \approx 0.45$) is transiently achieved
 - Super H-mode occurs in strongly shaped plasmas where pedestal pressure increases with density
- During D$_2$ and N$_2$ puffing, high pedestal pressure (~20 kPa) is sustained in radiative divertor with large reduction in divertor T_e

Super H-mode is compatible with both high fusion performance and high separatrix density for divertor solutions
Outline

1. Advances in Fusion Energy Science
2. Core-Edge Integration
3. Scenario Development
Key Advance is Stable ITER Baseline Scenario Equivalent to $Q_{fus} \approx 10$ With Zero Injected NBI Torque

- In past, steep “well” in current profile near $q=2$ made ITER baseline scenario at zero-torque unstable
 - Solution is to modify initial current profile by slowing I_p ramp and delaying H-mode transition
Key Advance is Stable ITER Baseline Scenario Equivalent to $Q_{fus} \approx 10$ With Zero Injected NBI Torque

- In past, steep “well” in current profile near $q=2$ made ITER baseline scenario at zero-torque unstable
 - Solution is to modify initial current profile by slowing I_p ramp and delaying H-mode transition
- Stable zero-torque operation obtained, but fusion gain ($\beta_T \tau_E$) doesn’t improve below $q_{95}=3.7$

ITER baseline achieved with correct torque, q_{95}, β_N, H_{98y2}, T_e/T_i, but needs lower v_s.

Luce PPC/2-1
Wide-Pedestal (ELM Stable) QH-Mode Initiated and Sustained With ≈ 0 NBI Torque, Also With Dominant Electron Heating

- New zero-torque startup replaces strong counter NBI torque with $n=3$ NTV torque
Wide-Pedestal (ELM Stable) QH-Mode Initiated and Sustained With ≈ 0 NBI Torque, Also With Dominant Electron Heating

- New zero-torque startup replaces strong counter NBI torque with $n=3$ NTV torque
- Wide-pedestal QH-mode also sustained by replacing most NBI power with ECH
 - Central ECH creates electron ITB ($T_e \approx 12$ keV)

Wide-pedestal QH-mode is attractive scenario for ITER: no ELMs, low ν_e, zero torque, electron heating but needs lower q_{95}

Ernst EX/2-2
High β_p Scenario Extended to Reactor-Relevant $q_{95}\sim6$ While Maintaining an ITB Using Negative Magnetic Shear

- Enhanced confinement (H_{98y2} up to 1.8) and ITB from Shafranov shift stabilization of turbulence
 - $E\times B$ shear is low at foot of ITB

First time achievement: self-consistent simulation evolving n_e, T_e, T_i, q predicts non-inductive $Q\sim5$ in ITER with day-one heating, zero rotation
Off-axis ECH gives Neon density peaking factor of ~2.6 while central ECH gives flat Neon profile

- β_N up to 3.8, $H_{98y2}=1.6$, $q_{\text{min}} \approx 1$
DIII-D is Integrating Radiative Divertor into “Steady State” High-β_N Hybrid Scenario

- Off-axis ECH gives Neon density peaking factor of ~2.6 while central ECH gives flat Neon profile
 - β_N up to 3.8, $H_{98y2}=1.6$, $q_{\text{min}} \approx 1$
- Both Neon-based and Argon-based mantles achieve 40% reduction in between-ELM divertor heat flux

\[
\begin{align*}
\rho & \quad ECH \at \rho = 0.45 \\
\rho & \quad ECH \at \rho = 0.20 \\
\end{align*}
\]

Good radiative divertor achieved with high beta, high confinement core
Future DIII-D Facility Enhancements Will Strengthen Steady-State and Boundary/PMI Research

DIII-D Research Elements

<table>
<thead>
<tr>
<th>Determine Path to Steady-State</th>
<th>Enabled by DIII-D Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased co-NBCD, off-axis NBCD</td>
<td>Increased EC power, top launch current drive</td>
</tr>
<tr>
<td>Helicon wave current drive</td>
<td>Inside launch lower hybrid current drive</td>
</tr>
</tbody>
</table>

3D Fields and Stability

- New ASIPP 3D coil power supplies
- More flexible 3D fields (M-coil)

Divertor and PMI

- W inserts in SAS 1
- Tile station
- W tiles/closed SAS 2 divertor
DIII-D Program is Advancing the Scientific Basis for Future Fusion Reactors

- Improving scientific basis for disruption and runaway electron mitigation
- Integrating detached and radiative divertors with high performance core
- Promising new high-gain and steady-state scenarios for ITER