Waste implications from minor impurities in European DEMO materials

Mark R. Gilbert, T. Eade, N.P. Taylor
Culham Centre for Fusion Energy

C. Bachmann U. Fischer
EUROfusion PMU KIT

27th IAEA Fusion Energy Conference
October 26, 2018, Ahmedabad, India
Introduction

- Waste-production predictions for a future demonstration fusion power plant (DEMO) are needed to assess the environmental and economic costs of radioactive waste disposal.
- During DEMO operation neutron irradiation will alter chemical composition of materials in reactor components, leading to radioactivity.
- Inventory simulations can quantitatively predict change in composition ("the inventory") resulting in predictions of activity and thus waste severity, computed as a function of time (both operational and post-life shutdown).
- Can be used to assess the significance of every constituent of a material – even those in very low concentrations.
Activation inventories

- E.g. Activity simulation of DEMO vacuum vessel (VV)
 - 316 stainless steel
- with FISPACT-II
 - traces concentrations of, and activity contributions from, individual (radio)nuclides

https://fispact.ukaea.uk
Activation inventories

- E.g. Activity simulation of DEMO vacuum vessel (VV)
 - 316 stainless steel
- with FISPACT-II
 - traces concentrations of, and activity contributions from, individual (radio)nuclides

https://fispact.ukaea.uk
Activation inventories

- E.g. Activity simulation of DEMO vacuum vessel (VV)
 - 316 stainless steel
- with FISPACT-II
 - traces concentrations of, and activity contributions from, individual (radio)nuclides

https://fispact.ukaea.uk
- neutron fluxes and spectra predicted by Monte-Carlo transport simulations
 - for a recent European DEMO design
- reactor operational scenario
 - ~ 22 years (including maintenance phases)
After a typical VV lifetime, the first few decades of decay-cooling are dominated by the usual Fe/Mn/Co radionuclides.

But at later times it is the long-lived radionuclides produced in nickel that dominate the activity for 100s and 1000s of years.

Main steel assumed for VV (and ex-vessel) in current DEMO.

Typical composition contains 12.5 wt.% Ni, 2.7% Mo, and 0.01% Nb.
EUROFER total activity

- Results after typical exposure in a near-surface blanket region (helium-cooled concept)
- From 100 years, the activity is dominated by ^{14}C nuclide of carbon – produced from the small amount of nitrogen in the steel (designed to improve high-temperature stability)
- A “reduced-activation” steel designed for in-vessel DEMO use
- only 0.01 wt.% Ni and 0.005% Mo; half of SS316’s Nb content; also contains around 0.045% N

0.0 seconds
Waste Assessment

- A key objective for the design of DEMO is that the reactor should not generate any radioactive waste that requires long-term deep storage.

- Any material not recycled at end-of-life (EOL) should ideally be low-level waste (LLW), or better, within a few decades.

- Previous assessment* has shown that this is an issue for current DEMO designs and material specifications.

- e.g., UK near-surface LLW repositories have a 12 MBq/kg limit for $\beta + \gamma$-activity and a 4 Mq/kg limit for α decay.

- many in-vessel and VV regions do not meet this criteria on an acceptable timescale (although some DEMO concepts are better than others).

- what can analysis of the inventory simulations say about these findings?

*Gilbert et al. *Nucl. Fusion* 57 (2017) 046015
• 63Ni (a β emitter) dominates activity from around 10 years after EOL (and exceeds the LLW limit for almost 1000 years)

• Some even longer-lived radionuclides of Ni, Nb, and Mo also exceed the UK-LLW limit
Despite the small amount of nitrogen in the typical EUROFER composition, it can still lead to the production of enough \(^{14}\text{C}\) (via \((n,p)\) reactions) to exceed LLW limits for 1000s of years.

- the \(T_{1/2}\) of \(^{14}\text{C}\) is more than 5700 years

EUROFER activity after \(~10\) years in a water-cooled blanket (WCLL DEMO)

Even when \(^{14}\text{C}\) is not an issue, the level of \(^{94}\text{Nb}\) could be a problem for repositories in other countries.
Here the 0.01 wt.% uranium in beryllium leads to several alpha-emitting actinides that would be a problem for most near-surface disposal facilities around the world.

Even with more optimistic (lower) U concentrations, there may still be disposal problems.

U content in Be can vary by source — could be as low as 0.001 wt.%
Manufacturing impurities in tungsten

- “pure W” does not produce any long-lived problem radionuclides
- But the ITER-grade doesn’t become UK-LLW for 100 years, mainly due to 60Co from the 0.001 wt.% Co in the composition
Summary

- Computational waste assessments for current European DEMO designs
 - highlight the potential issues surrounding minor impurities contained (sometimes deliberately) within many fusion materials
 - including EUROFER, where both nitrogen and niobium can cause problems
- Some components may not be acceptable in near-surface disposal facilities (low-level waste) for 100s of years due to the production of various long-lived radionuclides
- Outlook:
 - detailed analysis of worldwide repositories shows the significant variation in acceptance limits
 - suggests that a new repository tailored for fusion waste might be preferable to allow a DEMO reactor to avoid the need for long-term deep disposal
 - if not, then there should be greater control of certain impurities in DEMO materials