A Reduction of \(\approx 20\% \) in \(\tau_E \) During Neon- and Argon Injection was Driven by Evolving MHD Activity in These High \(\beta_N \) Plasmas

- Result at lower \(P_{IN} \) and \(\beta_N \):
 \(\approx 2\text{-}3X \) reduction in divertor heat flux with minimal decrease \(\tau_E \)

- At higher \(P_{IN} \) and \(\beta_N \):
 The susceptibility of high \(\beta_N \) DND plasmas to tearing modes during impurity injection complicates successful application of the radiating divertor/mantle to DIII-D.

- Outlook:
 Tearing modes must be avoided when combining a radiating mantle or a radiating divertor approach with high power, high \(\beta_N \) scenarios.

\(\Delta W/W_0 = -4 \, r_s^3 \, w/a^4 \)