Edge poloidal pressure asymmetries can drive large shear flows and E_r.

- MHD equilibria with localized poloidal pressure asymmetries necessarily have large shear flows and E_r at the edge.
- Asymmetries above the midplane produce $u_\theta < 0$ and $E_r > 0$ (Figs. (a)-(c)). A positive E_r is unfavorable for confinement; it will increase P_{LH}.
- Asymmetries below the midplane produce $u_\theta > 0$ and $E_r < 0$ (Figs. (d)-(f)). A negative E_r is favorable for confinement; it will decrease P_{LH}.
- This physics provides a qualitative explanation for the ion ∇B-drift-direction dependence of P_{LH}.
- Deliberately-introduced asymmetries can be used to improve or degrade confinement.