Transport at High β_p and Development of Candidate Steady State Scenarios for ITER

by
Joseph McClenaghan

with
A.M. Garofalo1, J. Huang2, G. M. Staebler1, S.Y. Ding2,3, D.B. Weisberg1, L.L. Lao1, X. Gong2, J. Qian1, Q. Ren1, C.T. Holcomb4, O. Meneghini1, B.C. Lyons1, S.P. Smith1

1. General Atomics
2. Institute of Plasma Physics, Chinese Academy of Sciences
3. Oak Ridge Associated Universities
4. Lawrence Livermore Nation Lab

Presented at
2018 IAEA Fusion Energy Conference
Ahmedabad, Gujarat, India

October 22 –27, 2018
High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high $q_{95} \sim 10$

- ITB and enhanced normalized confinement ($H_{98,y2} \sim 1.8$) maintained at $q_{95} \sim 6$ on DIII-D with help of reverse magnetic shear

- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER
High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high $q_{95} \sim 10$
- ITB and enhanced normalized confinement ($H_{98,y2} \sim 1.8$) maintained at $q_{95} \sim 6$ on DIII-D with help of reverse magnetic shear
- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER
The high q_{95} high β_p scenario transitions to high confinement at fixed β.

- **High performance typical operation:**
 - $\beta_p \sim \beta_N \sim 3$, $f_{gw} \sim 1$, $f_{bs} \sim 0.8$, $q_{95} \sim 10-12$
 - $H_{98} > 1.5$ even at low torque

- **Multiple confinement states**
 - H-mode ($H_{98} = 1.3$)
 - Enhanced ($H_{98} = 1.8$)

- **What is the difference between confinement states?**
H-mode and enhanced confinement states have very different pressure profiles

- Enhanced confinement state has lower pedestal height
- Large radius transport barrier improves confinement
Simple model predicts Shafranov shift and magnetic shear creates bifurcation in transport

- For circular flux surface large aspect ratio limit, the drift frequency is:

\[
\overline{k}_\perp \cdot \overline{v}_{da} \equiv k_\theta \frac{m_a \left(2v_\parallel^2 + v_\perp^2 \right)}{2 e_a R_0} \left[1 + \left(-\frac{1}{2} + \hat{S} - \alpha \right) \theta^2 \right] + \ldots
\]

Magnetic shear \(\hat{S} = \frac{r}{q} \frac{dq}{dr} \)

Shafranov shift \(\alpha = -R_0 q^2 \frac{d\beta}{dr} \)

G. M. Staebler Nucl. Fusion 2018
For circular flux surface large aspect ratio limit, the drift frequency is:

\[
\overline{k} \perp \cdot \overline{v}_{da} \equiv k_\theta \frac{m_a \left(2v_\parallel^2 + v_\perp^2 \right)}{2e_a R_0} \left[1 + \left(-\frac{1}{2} + \hat{S} - \alpha \right) \theta^2 \right] + \ldots
\]

Magnetic shear

\[
\hat{S} = \frac{r}{q} \frac{dq}{dr}
\]

Shafranov shift

\[
\alpha = -R_0 q^2 \frac{d\beta}{dr}
\]

Simple model predicts Shafranov shift and magnetic shear creates bifurcation in transport.
Simple model predicts Shafranov shift and magnetic shear creates bifurcation in transport

- For circular flux surface large aspect ratio limit, the drift frequency is:

\[
\bar{k}_{\perp} \cdot \bar{V}_{da} \cong k_{\theta} \frac{m_a \left(2v_\parallel^2 + v_\perp^2 \right)}{2e_a R_0} \left[1 + \left(-\frac{1}{2} + \hat{S} - \alpha \right) \theta^2 \right] + \ldots
\]

Magnetic shear

\[
\hat{S} = \frac{r}{q} \frac{dq}{dr}
\]

Shafranov shift

\[
\alpha = -R_0 q^2 \frac{d\beta}{dr}
\]

G. M. Staebler Nucl. Fusion 2018
Simple model predicts Shafranov shift and magnetic shear creates bifurcation in transport

- For circular flux surface large aspect ratio limit, the drift frequency is:

\[
\overline{k}_\perp \cdot \overline{v}_{da} \equiv k_\theta \frac{m_a \left(2v_\parallel^2 + v_\perp^2 \right)}{2e_a R_0} \left[1 + \left(-\frac{1}{2} + \hat{S} - \alpha \right) \theta^2 \right] + \ldots
\]

Magnetic shear
\[\hat{S} = \frac{r}{q} \frac{dq}{dr} \]

Shafranov shift
\[\alpha = -R_0 q_2 \frac{d\beta}{dr} \]
Simple model predicts Shafranov shift and magnetic shear creates bifurcation in transport

- For circular flux surface large aspect ratio limit, the drift frequency is:

\[
\overline{k} \cdot \overline{v}_{da} \equiv k_\theta \frac{ma}{2e_aR_0} \left[2 + \left(-\frac{1}{2} + \hat{s} - \alpha \right) \theta^2 \right] + \ldots
\]

Magnetic shear

\[
\hat{s} = \frac{r}{q} \frac{dq}{dr}
\]

Shafranov shift

\[
\alpha = -R_0q^2 \frac{d\beta}{dr}
\]

G. M. Staebler Nucl. Fusion 2018
Bifurcation of transport with mid-radius pressure gradient observed when plasma is in β_N feedback

- β_N feedback
 - P_{aux} is dependent on ρ

$\beta_N > 1$, $I_p > 550$ kA

P_{aux} (MW) vs $-\frac{dp}{d\rho}$ (kPa) at $\rho = 0.6$
Bifurcation of transport with mid-radius pressure gradient observed when plasma is in β_N feedback

- **β_N feedback**
 - P_{aux} is dependent on ρ

- **Small $dp/d\rho$**
 - Increasing pressure gradient increases required P_{aux}

$\beta_N > 1 , I_p > 550 \text{ kA}$

$164527-164542$
Bifurcation of transport with mid-radius pressure gradient observed when plasma is in β_N feedback

- β_N feedback
 - P_{aux} is dependent on ρ

- Small $dp/d\rho$
 - Increasing pressure gradient increases required P_{aux}

- Large $dp/d\rho$
 - Increasing pressure gradient decreases required P_{aux}

$\beta_N > 1$, $I_p > 550$ kA
Two distinct pedestal states are observed in high β_p scenario.
Two distinct pedestal states are observed in high β_p scenario

- High pedestal, low mid-radius pressure gradient state
Two distinct pedestal states are observed in high β_p scenario

- High pedestal, low mid-radius pressure gradient state
- Low pedestal, high mid-radius pressure gradient state
Two distinct pedestal states are observed in high β_p scenario

- High pedestal, low mid-radius pressure gradient state
- Low pedestal, high mid-radius pressure gradient state
- Transition between states is usually triggered by ELM
• Quasilinear gyro-Landau fluid code fit to non-linear gyrokinetic turbulence simulations

• Recent correction to Ampere’s Law leads to prediction of KBM mountain, which is important in predicting high β_p ITB plasmas

TGLF transport code used to analyze core transport

G. M. Staebler PoP 2018
TGLF predicts transport at $\rho=0.6$ decreases as ITB forms

- Predicted flux greater for H-mode state
TGLF predicts transport at $\rho=0.6$ decreases as ITB forms

- Predicted flux greater for H-mode state
- TGLF input linear interpolated for intermediate state
- At $\rho=0.6$, turbulence is stabilized as α-s increases
Large electromagnetic transport in between two states at large radius $\rho=0.8$

- Predicted flux greater for H-mode confinement state
Large electromagnetic transport in between two states at large radius $\rho=0.8$

- Predicted flux greater for H-mode confinement state
Large electromagnetic transport in between two states at large radius $\rho=0.8$

- Predicted flux greater for H-mode confinement state
- When $\beta_e=0$ (i.e. electrostatic), increasing α-s is stabilizing
- How does plasma cross the KBM mountain?
Large ELM could help plasma across KBM mountain

- Large ELM that occurs 50 ms before ITB begins to form
- Allows transition from H-mode to ITB state
 - ELM lowers edge T_e and increases mid-radius ρ'
 - Transiently lowers β_e at edge
High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high $q_{95} \sim 10$

- ITB and enhanced normalized confinement ($H_{98,y2} \sim 1.8$) maintained at $q_{95} \sim 6$ on DIII-D with help of reverse magnetic shear

- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER
q dependence of Shafranov shift makes sustainment of ITB at lower q_{95} more difficult

Local measure of Shafranov shift:

$$\alpha = -R_0 q^2 \frac{d \beta}{dr}$$
Local measure of Shafranov shift:

\[\alpha = -R_0 q^2 \frac{d\beta}{dr} \]

- Plasma extended to lower \(q_{95} \approx 6 \) via second current ramp
 - Allows plasma to get to near ITB conditions before going to lower \(q_{95} \)
- Threshold \(\beta_p \approx 1.9 \)
Enhanced confinement at $q_{95} \sim 6$ has been achieved with reverse shear.

Simple model: α_s

Reverse shear produced with use of off-axis beams.

$H_{98,\gamma_2} = 1.3$

$H_{98,\gamma_2} = 1.8$

Graphs showing q_95, β_p, and H_{98} over time.
Lower pedestal observed with ITB (same as high q_{95}!)

$$H_{98,\gamma^2} = 1.3 \quad H_{98,\gamma^2} = 1.8$$

Diagram:

- $P(10^4 \text{ Pa})$ vs. ρ
- q vs. ρ

Simple model: α, s
Rotation ITB does not align with temperature ITB, suggests that ExB shear not important for energy confinement.
Rotation ITB does not align with temperature ITB, suggests that ExB shear not important for energy confinement.
Rotation ITB does not align with temperature ITB, suggests that ExB shear not important for energy confinement.

- TGYRO predictive simulation suggests ITB exists w/o ExB shear.
High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high $q_{95} \sim 10$

- ITB and enhanced normalized confinement ($H_{98,y2} \sim 1.8$) maintained at $q_{95} \sim 6$ on DIII-D with help of reverse magnetic shear

- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER
High confinement required to achieve ITER steady-state goal of $Q=5$ with day one heating

- 0D modeling using GA Systems Code

- Constraints include:
 - $f_{gw} = 1$, H_{98y2}, $f_{Ni} = 1$, $Q=5$

- $H_{98} \sim 1.5$ is required to achieve $Q=5$ with $P_{aux} = 73$ MW

Each point is $Q=5$ solution

ITER day one heating

P_{aux} vs H_{98}
Iterative loop for integrated modeling is used to find self-consistent steady-state solution

- **Self-consistent modeling loop**
 - Iterate between kinetic evolution (TGYRO) current evolution (ONETWO), and magnetic equilibrium solver (EFIT)
- **T_i, T_e, n_e, q are evolved**
 - Day 1 heating: 33MW NNBI, 20MW ECCD, 20MW ICRF
 - $\text{ExB}=0$, $T_{e,\text{ped}}=3.25\text{ keV}$, $I_p=8\text{ MA}$, $f_{gw}\sim1.2$
Self-consistent modeling suggests that ITER ITB could be sustained with day one actuators

- Converged prediction shows $Q \sim 6$ solution with ITB and reverse shear
 - However, Q is very sensitive to height of ITB

- Predicted $n=1$ no-wall stable by GATO at $\beta_N \sim 3.2$
High $\beta_p \approx 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high $q_{95} \approx 10$

- ITB and enhanced normalized confinement ($H_{98,y2} \approx 1.8$) maintained at $q_{95} \approx 6$ on DIII-D with help of reverse magnetic shear

- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER
Recent correction to EM effects predicts ITB without need for large NCS

• Prediction of T_i is roughly what is needed for $Q=5$

• q-profile not consistent with evolved kinetic profiles.

ExB=0

evolve T_i, te, ne profiles
fixed q profile
Previous TGYRO predictive modeling suggested large NCS required for ITB formation

- TGYRO predict n_e, T_e, T_i profiles by matching predicted flux from TGLF, NEO to power balance
- n_e, T_e, T_i profiles needed for $Q=5$ approximately $q_0=7$

Fixed $I_p=7.4$ MA

ITB formation
When there are no large type-I ELMs, and there is no ITB formation, consistent with ELM hypothesis

- Three extended high β_p discharges with varied RMP I-coil perturbations
 - Largest I-coil perturbation (green) has no Type-I ELMs and no ITB
Low pedestal state stability not near instability threshold

- Stability analysis performed using the ELITE code
- Gap in right corner
High pedestal state is inside the right corner gap

- State current gradient peeling limited