NSTX/NSTX-U Theory, Modeling and Analysis Results & Overview of New MAST Physics in Anticipation of First Results from MAST UPGRADE

IAEA FEC, Oct. 14, 2018

S.M. Kaye (PPPL), J. Harrison (CCFE) for the NSTX-U and MAST-U Teams
NSTX(-U) and MAST research address urgent issues for fusion science, ITER and next-step devices

• Core transport & turbulence studied over an extended range of β
 – Electrostatic and electromagnetic effects drive strong favorable v_* scaling
 – Multi-scale effects (low- & high-k) must be considered

• Energetic particle effects and instabilities studied in portions of parameter space expected for α-burning plasmas
 – Low and high frequency modes can have profound effect on EP distribution
 – Predictive models and phase-space engineering techniques being developed

• L-H and H-mode physics
 – Zonal flow to turbulence energy flow prior to L-H inconsistent with predator-prey

• SOL turbulence studies address processes controlling heat flux width
 – Filamentary structures/turbulence
 – Heat flux mitigation through innovative divertor designs