Physics-model-based Real-time Optimization for the Development of Steady-state Scenarios at DIII-D

Thursday, 25 October 2018 14:00 (20)

Recent and ongoing experiments on DIII-D demonstrate the potential of model-based real-time optimization for the realization of advanced steady-state scenarios by tightly regulating the \(q \) profile and \(\beta_N \) (or the plasma energy \(W \)) simultaneously. A primary goal for the DIII-D research program over the next five years is to develop the physics basis for a high \(q \) (\(q_{\text{min}} > 2 \)), high \(\beta_N \), steady-state scenario (fully relaxed plasma state where the current is entirely noninductive) that can serve as the basis for future steady-state burning plasmas. Various approaches are being considered to maximize both the bootstrap current and the noninductive current-drive contributions, so that fully noninductive (\(f_{\text{NI}} = 1 \)) discharges can be obtained for several resistive current diffusion times. It is anticipated that the upcoming upgrades to DIII-D, including an additional off-axis neutral beam injection (NBI) system, will provide sufficient auxiliary current drive to maintain fully noninductive plasmas at high \(\beta_N \). However, much work is still necessary to investigate MHD stability, adequate confinement, and early achievement and sustainment of the steady-state condition. The capability of combined \(q \)-profile and \(\beta_N \) control to enable access to and repeatability of steady-state scenarios for \(q_{\text{min}} > 1.4 \) discharges has been assessed in DIII-D experiments. To steer the plasma to the desired state, a model predictive control approach to both \(q \)-profile and \(\beta_N \) regulation numerically solves successive optimization problems in real time over a receding time horizon by exploiting efficient quadratic programming techniques. A key advantage of this control approach is that it allows for explicit incorporation of plasma-state/actuator constraints to prevent the controller from driving the plasma outside of stability/performance limits and obtain, as closely as possible, steady state conditions. Experimental results demonstrate the effectiveness of the real-time optimization scheme to consistently achieve the desired scenarios at predefined times and suggest that control-oriented model-based scenario planning in combination with real-time optimization can play a crucial role in exploring stability limits of advanced steady-state scenarios.

Country or International Organization
United States of America

Paper Number
EX/P6-39

Primary author(s) : Prof. SCHUSTER, Eugenio (Lehigh University)

Co-author(s) : Mr PAJARES, Andres (Lehigh University); Mr PENAFLOR, Benjamin (General Atomics); Dr HOLCOMB, Christopher T. (Lawrence Livermore National Laboratory); Dr HUMPHREYS, David (General Atomics); Dr FERRON, John (General Atomics); Dr WALKER, Michael (General Atomics); Mr JOHNSON, Robert (General Atomics); Dr WEHNER, William (Lehigh University)

Presenter(s) : Prof. SCHUSTER, Eugenio (Lehigh University)
Session Classification: P6 Posters