Integration of the High- β_N Hybrid Scenario to a High Performance Pedestal, Stable Zero Torque Operation and a Divertor Solution

by **F. Turco**

with T.W. Petrie, T.H. Osborne, C.C. Petty, T.C. Luce, B.A. Grierson, G.A. Navratil, M.A. Van Zeeland

Presented at the 27th IAEA conference, Gandhinagar, India

October 22-27, 2018

Ingredients for a fusion power plant

Projection to steady-state reactor operation requires integration of core and edge physics in present machines

- Core
 - High fusion power, high gain, $f_{NI} \sim 1$ (β_T , τ_E , H_{98y2})
 - 2/1 tearing stable (for performance, not disruptions)
 - Low rotation \rightarrow Low injected torque
 - Compatible with H&CD schemes (on- & off-axis)
- Pedestal and edge/divertor
 - Low heat and particle flux to divertor
 - Low heat to first wall/blanket
 - No ELMs or small-ELM regime

pedesta

edge/

divertor

Ingredients for a fusion power plant

Projection to steady-state reactor operation requires integration of core and edge physics in present machines

- Core
 - High fusion power, high gain, $f_{NI} \sim 1$ (β_T , τ_E , H_{98y2})
 - 2/1 tearing stable (for performance, not disruptions)
 - Low rotation \rightarrow Low injected torque
 - Compatible with H&CD schemes (on- & off-axis)
- Pedestal and edge/divertor
 - Low heat and particle flux to divertor
 - Low heat to first wall/blanket
 - No ELMs or small-ELM regime Not today

The high- β_N hybrid scenario is an attractive option for steady-state and core-edge integration work

Hybrid scenario = high power, $\beta_N > \beta_{no-wall}$, no sawteeth, $q_{min} \sim 1$, ITER Q_{projection}~4-5

The high- β_N hybrid scenario is an attractive option for steady-state and core-edge integration work

Hybrid scenario = high power, $\beta_N > \beta_{no-wall}$, no sawteeth, $q_{min} \sim 1$, ITER $Q_{projection} \sim 4-5$

- ECH: varied deposition and injection angle for CD vs heating and compatibility with high density operation
- NBI: mix co- and ctr-I_p injection for low and balanced torque
- D₂ puff for radiating divertor operation
- Ar and Ne injection for radiating mantle

Highly reproducible high- β_N hybrid plasmas modified for radiating divertor/mantle solution

- $P_{TOT} = P_{NBI} + P_{EC} = 11.2 + 3.4 = 14.5 \text{ MW}$
- $\beta_{N} \sim 3.6 \sim 0.8 \times \beta_{lim}$; H_{98y2}~1.4-1.6
- ρ_{EC} varied from 0.14 to 0.65
- Torque varied from 9 to 0 Nm (at lower input power)

Moving EC power off-axis has consequences on both stability and confinement

 Off-axis EC is deposited in lower density region → less susceptible to wave refraction

 ρ_{EC} <0.35 \rightarrow mostly stable, but potentially refracted

 ρ_{EC} =0.45 (radial) \rightarrow more reproducibly stable than current drive (tangential)

Sweet spot ρ_{EC} =0.45, without CD

Moving EC power off-axis has consequences on both stability and <u>confinement</u>

Off-axis EC deposition, at fixed density
 → lower heating efficiency → lower β_N,
 H_{98y2}~1.6→1.3

Moving EC power off-axis has consequences on both stability and <u>confinement</u>

- Off-axis EC deposition, at fixed density
 → lower heating efficiency → lower β_N,
 H_{98y2}~1.6→1.3
- Higher density, at fixed power and ρ_{EC}
 → recover high confinement (H_{98Y2}~1.7), exceeds β_N=4

At high power, the pedestal rises with density → leads to enhanced confinement regime

Confinement increases with density because of pedestal changes:

- Peeling-ballooning branches decouple
 → critical ∇p increases along the peeling branch → higher pedestal
- ELITE (pedestal stability) simulations predict this for q₉₅>5.7, dRsep<1 cm, and high power

New experiments explored operational space with shaping and power variations

 Enhanced confinement regime occurs with P≥12 MW, q₉₅>5.5, dRsep<|1.5| cm

Experimental dRsep range is slightly wider than ELITE predictions

Higher fast-ion losses from the core contribute to decreased confinement at lower density

Anomalous fast-ion diffusion coefficient inferred by reproducing neutron rate

Consistent with density fluctuation measurements in the f_{TAE} range

Ne and Ar injection for radiating mantle \rightarrow 40% divertor heat flux reduction achieved

- Main chamber injection
- Similar results with PFR injection
- Core power balance is not a problem (P_{rad,core}~13%)

Choice of impurity leads to different core density and profile peaking factor

Ne is fully stripped → 2.3x
 larger flow for same heat flux
 reduction → higher core
 electron density

Choice of impurity leads to different core density and profile peaking factor

- Ne is fully stripped → 2.3x larger flow for same heat flux reduction → higher core electron density
- At high density and Ne flow, Ne profile is as flat as e⁻ profile

Choice of impurity leads to different core density and profile peaking factor

- Ne is fully stripped → 2.3x larger flow for same heat flux reduction → higher core electron density
- At high density and Ne flow, Ne profile is as flat as e⁻ profile
- Ar profile is much more peaked (lower n_e, Ar flow)

At lower density, off-axis EC leads to core impurity accumulation

- Off-axis EC leads to core accumulation (for impurities and C alike
- Core dilution becomes a problem
- On-axis EC injection avoids the core accumulation
- Expands DIII-D tungsten ring campaign and AUG results to high β_N , high power
- Similar results with PFR or main chamber injection

Impurity core accumulation is associated with deleterious tearing modes

- Series of n=2 and n=1 core instabilities appear with larger injection rates (Ar, Ne)
- Same effect with C from dome tiles → divertor leakage can be an issue

Stable hybrid plasmas obtained at zero injected torque

- Torque=0 Nm uses P_{ctr} ~4 MW + P_{co} ~4 MW \rightarrow lower β_N achieved
- All shots stable to deleterious 2/1 or 3/1 modes
- ECCD at $\rho_{\text{EC}}\text{~~0.22}$

Passively stable hybrid plasmas obtained, without EC stabilization

- Zero torque plasmas remain stable when P_{EC} is reduced to ~0.5 MW
- No need for ECCD stabilization because of higher MHD limits:
- → Higher q₉₅~5.7-6 → higher ideal and resistive MHD limits than q₉₅~4, β_N~2.5 Al plasmas [Solomon2013]

H_{98y2} decreases with lower core rotation – stays above normal H-mode confinement

 Same β_N~2.3, H_{98y2}~1.07 without EC power

H_{98y2} decreases with lower core rotation – stays above normal H-mode confinement

 Same β_N~2.3, H_{98y2}~1.07 without EC power

τ_E recovers 90% of the high Ω
 confinement without EC power

Summary and lessons learned

- Achieved H_{98y2} =1.5-1.7, β_N =3.7-4.2, P_{inj} =15 MW
- > At high- β_N , low-Z impurity accumulation can become a serious issue
- Achieved passively stable zero torque hybrid plasmas at $\beta_N \sim 2.3$
- > Confinement decreases at low rotation, but remains > normal H-mode
- Enhanced pedestal increases confinement at high power (H_{98} ~1.7, β_N ~4)
- Highly shaped, balanced DN equilibria are an attractive option for radiating divertor high-power operation
- Ar, Ne injection reduce the divertor heat flux by ~40%, with costs for the core performance
- > Central ECH with O-mode, higher MHD limits with shape optimization

Thank you for your attention

Turco/IAEA-FEC 2018/Oct.24th

The secondary divertor plays a non negligible role in impurity distribution

- Ne pumped from both divertors, Ar mostly from upper (secondary) divertor
- Ar ionization mean free path is 1/10 of Ne
- → ionized on flux surfaces directly connecting to the upper divertor

