Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup

M.W. Bongard

27th IAEA Fusion Energy Conference

Gandhinagar, India
Presentation EX/P6-34
25 October 2018
A Growing Understanding of Physics and Engineering Issues in LHI Informs its Application to Next-Step Machines

Varying Injector Location Enables Study of LHI Physics and Engineering Tradeoffs

New Scenarios Developed to Transfer Between LFS → HFS Injector Systems and Combine Strengths of Each Geometry

Research on the A ~ 1 Pegasus ST is Advancing the Physics and Technology Basis of Local Helicity Injection Non-Solenoidal Startup

Operating Regime with Significant Reduction of Large-Scale MHD and Increased Ip Found During HFS Injection Experiments

HFS LHI at Near-Unity A Provides access to $\beta_t \sim 100\%$ and Magnetic Configurations with Minimum $|B|$ Wells

Recent Experiments Suggest High Frequency Magnetic Activity and Reconnection Play a Role in LHI Current Drive

URANIA Experiment: Converted PEGASUS Facility for US Non-Solenoidal Development Station

Recommended size per IAEA 110 cm x 85 cm (HxW)
Solenoid-free startup desirable for ST, AT reactors

LHI is promising method to accomplish this goal
- Edge current extracted from injectors at boundary
- Relaxation to tokamak-like state via helicity-conserving instabilities
- Global current limits from Taylor relaxation, helicity balance
- Hardware retractable prior to nuclear phase in reactor

Routinely used for startup on PEGASUS

Non-Solenoidal $I_p = 0.2$ MA Plasma via LHI ($I_{inj} \leq 8$ kA)

PEGASUS Parameters
- $I_p \leq 0.23$ MA
- $\Delta t_{shot} \leq 0.025$ s
- $B_T = 0.15$ T
- $A = 1.15$–1.3
- $R = 0.2$–0.45 m
- $a \leq 0.4$ m
- $\kappa = 1.4$–3.7

Injector Parameters
- $\sum I_{inj} \leq 14$ kA
- $I_{inj} \leq 4$ kA
- $V_{inj} \leq 2.5$ kV
- $N_{inj} \leq 4$
- $A_{inj} = 2$–4 cm2
- $I_{arc} \leq 4$ kA
- $V_{arc} \leq 0.5$ kV

M.W. Bongard, IAEA FEC 2018
A Growing Understanding of Physics and Engineering Issues in LHI Informs its Application to Next-Step Machines

M.W. Bongard, IAEA FEC 2018

LHI Physics Models

- Global I_p limits:
 - Taylor relaxation
 $$I_p \leq I_{TL} \sim \sqrt{I_{TF}I_{\text{inj}}/\omega}$$
 - Helicity conservation
 $$V_{LHI} \approx A_{\text{inj}} B_{T,\text{inj}} V_{\text{inj}} / \Psi$$

- Predictive power balance: $I_p(t)$
 $$I_p[V_{LHI} + V_{IR} + V_{IND}] = 0 ; I_p \leq I_{TL}$$

- 3D resistive MHD / NIMROD
 - Initial relaxation
 - Role of reconnection

Coupled Physics/Engineering Needs

- Helicity injector source design
 - I_{inj}, ω: set $I_{TL} \geq I_p$
 - $N_{\text{inj}} A_{\text{inj}} V_{\text{inj}}$: attain / sustain I_p
 - Armoring, limiters to minimize PMI

- Injector system geometry
 - Provide initial relaxation via near-PF null
 - Site conformal to desired plasma shape
 - Facility port access compatibility

- Injector impedance and power systems
 - $Z_{\text{inj}} = Z_{\text{inj}}(n_{arc}, n_{\text{edge}}, ...)$

Outstanding Issues

- Scaling to high I_p
 - Larger size
 - High B_T
 - Longer pulse

- Handoff to non-inductive CD
 - LHI \rightarrow OH H-mode demonstrated

- Confinement, impurities, and dissipation during LHI

- LHI current drive mechanism

LHI Physics Models

- Global I_p limits:
 - Taylor relaxation
 $$I_p \leq I_{TL} \sim \sqrt{I_{TF}I_{\text{inj}}/\omega}$$
 - Helicity conservation
 $$V_{LHI} \approx A_{\text{inj}} B_{T,\text{inj}} V_{\text{inj}} / \Psi$$

- Predictive power balance: $I_p(t)$
 $$I_p[V_{LHI} + V_{IR} + V_{IND}] = 0 ; I_p \leq I_{TL}$$

- 3D resistive MHD / NIMROD
 - Initial relaxation
 - Role of reconnection

Coupled Physics/Engineering Needs

- Helicity injector source design
 - I_{inj}, ω: set $I_{TL} \geq I_p$
 - $N_{\text{inj}} A_{\text{inj}} V_{\text{inj}}$: attain / sustain I_p
 - Armoring, limiters to minimize PMI

- Injector system geometry
 - Provide initial relaxation via near-PF null
 - Site conformal to desired plasma shape
 - Facility port access compatibility

- Injector impedance and power systems
 - $Z_{\text{inj}} = Z_{\text{inj}}(n_{arc}, n_{\text{edge}}, ...)$

Outstanding Issues

- Scaling to high I_p
 - Larger size
 - High B_T
 - Longer pulse

- Handoff to non-inductive CD
 - LHI \rightarrow OH H-mode demonstrated

- Confinement, impurities, and dissipation during LHI

- LHI current drive mechanism
Varying Injector Location Enables Study of LHI Physics and Engineering Tradeoffs

- Extrema of feasible LHI geometries deployed in Pegasus

- Low-field-side (LFS) injection
 - Injectors on outboard midplane
 - High $R_{inj} \rightarrow$ low V_{LHI}
 - Dynamic shape \rightarrow strong V_{IND}

- High-field-side (HFS) injection
 - Injectors in lower divertor
 - Low $R_{inj} \rightarrow$ strong V_{LHI}
 - Static shape \rightarrow minimal V_{IND}

- $I_p \sim 0.2$ MA attained in both geometries
 - Power supply and PMI limited

Injector System Comparisons

<table>
<thead>
<tr>
<th>Quantity</th>
<th>LFS</th>
<th>HFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{inj}</td>
<td>≤ 3</td>
<td>≤ 2</td>
</tr>
<tr>
<td>A_{inj}</td>
<td>2 cm^2</td>
<td>4 cm^2</td>
</tr>
<tr>
<td>R_{inj}</td>
<td>0.70 m</td>
<td>0.26 m</td>
</tr>
<tr>
<td>B_{inj}</td>
<td>$\leq 0.08 \text{ T}$</td>
<td>$\leq 0.22 \text{ T}$</td>
</tr>
<tr>
<td>V_{inj}</td>
<td>$\leq 1.5 \text{ kV}$</td>
<td>$\leq 1.5 \text{ kV}$</td>
</tr>
<tr>
<td>I_{inj}</td>
<td>6 kA</td>
<td>8 kA</td>
</tr>
<tr>
<td>P_{inj}</td>
<td>9 MW</td>
<td>12 MW</td>
</tr>
<tr>
<td>$\frac{V_{LHI}}{V_{LHI,LFS}}$</td>
<td>1</td>
<td>3.7</td>
</tr>
</tbody>
</table>

LFS: Non-solenoidal Induction

HFS: Helicity Injection
New Scenarios Developed to Transfer Between LFS \rightarrow HFS Injector Systems and Combine Strengths of Each Geometry

- LFS \rightarrow HFS handoff provides ready access to full-B_T operations with HFS injectors
 - LFS: Simpler relaxation access, lower PMI
 - HFS: Higher V_{LHI}
 - Seamless transfer between separate LHI systems

- Informs HFS high-B_T LHI system design
 - Relaxation, sustainment requirements may demand separate hardware features in higher-field machines

- Record LHI $I_p = 0.225$ MA attained
 - Peaked temperature, density pressure profiles
 - $T_e > 100$ eV, $n_e \sim 1 \times 10^{19}$ m$^{-3}$
Recent Experiments Suggest High Frequency Magnetic Activity and Reconnection Play a Role in LHI Current Drive

M.W. Bongard, IAEA FEC 2018

- NIMROD simulations of HFS LHI reproduce features observed in experiment
 - Relaxation to tokamak-like state
 - Bursty 10’s kHz $n = 1$ activity on LFS Mirnovs
 - Identifies helical current stream reconnection as a current drive mechanism

- Anomalous, reconnection-driven ion heating present during LHI
 - Continuously sustains $T_i > T_e$
 - Consistent with two-fluid reconnection theory
 - T_i correlated with high frequency activity

- Internal magnetic measurements find significant high-frequency spectral content
 - ~700 kHz feature: arc source
 - Broadband continuum
Operating Regime with Significant Reduction of Large-Scale MHD and Increased I_p Found During HFS Injection Experiments

- Abrupt MHD transition can lead to improved performance
 - Low-f $n = 1$ activity reduced by over $10\times$ on LFS
 - Bifurcation in I_p evolution following transition
 - Up to $2\times I_p$ at fixed V_{LHI}
 - Linear scaling of $I_p(V_{LHI})$ in this regime at low $B_T = 0.05$ T

- Sustained discharges without $n = 1$ activity possible
 - Implies $n = 1$ mode not responsible/required for LHI current drive

- Mechanism for transition unclear, under investigation
 - $n = 1$ reduction interpreted as stabilization of injector streams
 - Extremely sensitive to B_T, B_Z, I_p, fueling
 - Access scales with $I_p/I_{TF} \sim 1$: min-$|B|$ well?
 - If extensible to higher B_T, may afford simpler LHI system requirements

M.W. Bongard, IAEA FEC 2018
HFS LHI at Near-Unity A Provides Access to $\beta_t \sim 100\%$ and Magnetic Configurations with Minimum $|B|$ Wells

- Access to highly-shaped, high β_t plasmas
 - Low $I_{TF} \sim 0.6 I_p$
 - $A \sim 1$: high κ, low ℓ_i, and high $\beta_{N,max}$
 - Reconnection-driven $T_i > T_e$
 - Disrupting at ideal no-wall stability limit

- High-β_t equilibria contain large min-$|B|$ region
 - Up to 47% of plasma volume
 - Potentially favorable for stabilization of drift modes, reduction of stochastic transport

- Minimum $|B|$ regime arises from 3 major influences
 - $B_p \sim B_T$ at $A \sim 1$
 - Hollow $J(R)$
 - Pressure-driven diamagnetism (although $\beta_p < 1$)

M.W. Bongard, IAEA FEC 2018
URANIA Experiment: Converted PEGASUS Facility for US Non-Solenoidal Development Station

- **Mission:** compare / contrast / combine reactor-relevant startup techniques at $I_p \sim 0.3$ MA
 - LHI, CHI, RF/EBW Heating & CD
 - Goal: guidance for ~1 MA startup on NSTX-U, beyond

- **Upgrades from PEGASUS to URANIA:**
 - New centerstack assembly: No solenoid magnet
 - Increase B_T 4×: 0.15 → 0.6 T
 - Longer pulse: 25 → 100 ms
 - Improved shape control with new PF, divertor coils
 - Diagnostic neutral beam: kinetic and impurity diagnostics
 - EBW RF Heating & CD (w/ ORNL)
 - Transient, Sustained CHI (w/ Univ. Washington, PPPL)

- **Engineering design underway**
 - Centerstack upgrade scheduled for late 2019

M.W. Bongard, IAEA FEC 2018