

Evaluation of Tungsten as Divertor Plasma-Facing Material: Results from Ion-Irradiation Experiments & Computer Simulations

P.N. Maya ITER-India, Institute for Plasma Research, India

26/10/2018 Gandhinagar, India

Co-authors & Collaborating Institutions

P. SHARMA¹, P.M. RAOLE¹, S. S.VALA², A. SATYAPRASAD², S. MUKHERJEE³, P.K. PUJARI³, P. KULRIYA⁴, P.K BAJPAI⁵, A. ATTRI¹, A.K. TYAGI¹, M. WARRIER⁶, P.V. SUBHASH¹, P. KIKANI², P. RAYJADA², C. DAVID⁷, A. LAKHANI⁸, V. KARKI³, M. SINGH³, R. KUMAR², M. ABHANGI², K. DEVRANI DEVI⁴, KEDARMAL⁴, S.P. PATEL⁵, T. TRIVEDI⁵, K. SARAVANAN³, S. KANNAN³, S. MISHRA³, K.B. KHAN³, P. NANDI¹, S. KHIRWADKAR¹ AND S.P. DESHPANDE¹

^{1.} ITER-India, Institute for Plasma Research, Gandhinagar, India - 382428
 ^{2.} Institute for Plasma Research, Bhat, Gandhinagar, India- 382428
 ^{3.} Bhabha Atomic Research Center, Trombay, Mumbai, India- 400085
 ^{4.} Inter-University Accelerator Center, New Delhi, India – 110067
 ^{5.} Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur CG, India - 495009
 ^{6.} BARC, Vishakhapatanam, AP, India – 530012
 ^{7.} Indira Gandhi Center for Atomic Research, Kalpakkam, TN, India – 603102

^{8.} UGC-DAE Consortium for Scientific Research, Indore, MP, India -452017

- Low T-retention
- High melting point
- Low erosion

- Low dust formation
- Low Z_{eff}
- High heat flux handling

Neutron Irradiation & T-retention

What will be the T-retention in reactor environment?

Neutron transport calculations using ATTILA combined with SPECTER

PKA/neutron ~ 0.4

JIER-India Even if only one D/T-atom was trapped at each defect ...

Machine	Power (MW)	Γ_{n} (cm ⁻² s ⁻¹)	FPY [§] (lifetime)	Φ_n (cm ⁻²)	PKA ^{\$} (cm ⁻³)	FP ^{\$§} (cm ⁻³)	T atom - trapped ^{&&}
ITER- like**	500	1.7 x10 ¹³	0.4	2 x 10 ²⁰	8 x 10 ¹⁹	8x10 ¹⁹	4x10 ²⁵ (200 gm)
DEMO*	2000	7 x 10 ¹³	14	3 x 10 ²²	1.2 x 10 ²²	1.2 x 10 ²²	0.6x10 ²⁸ (30 kg!!!)

* DEMO based on ITER-like ** Surface area ~1000 m² § 1 FPY = 3 x 10⁷ s PKA/n = 0.4 \$ FP/PKA = 1 \$ 100 m² n-wetted area (OVT+dome+IVT) * DEMO based on ITER-like Assuming 20 ye Regulatory limit From crucial its relation of the second s

Assuming 20 years – 1.5kg/year

Regulatory limit may force a de-tritiation/change

From the point of view of trapping it is crucial to understand the nature of defect and its relation to PKA

5

Number of defects & defect cluster size increases with PKA energy

Comparison with SRIM $E_d = 90 \text{ eV}$. *Recombination is significant*

At lower PKA energies, ($E_{PKA} < 30 \text{ keV}$) smaller defect clusters are formed

Interstitials in red, Vacancies in green Atoms participating in the cascade ~1/2 ps have been superposed

As PKA energy increases larger interstitial & vacancy clusters are formed

Spatially & temporally interacting cascades

100 ps after bombardment

Vacancies leave the imprint of the cascade at room temperature

So far:

Correlation between PKA and defect needs to be studied for estimating T-trapping Simulations show interstitials are mobile and show clustering at the end of the cascade Vacancies are immobile at room temperature – leave the imprint of cascade

Ion-Irradiation Experiments Effect of PKA spectrum

Parameters of irradiation experiments

Ions (m) Energy	Mean Range (µm)	Fluence (cm ²)	dpa E _d =90eV	Facility	
D ⁺ (2) 100 keV	0.6	5 x 10 ¹⁷	0.85	14 MeV n- generator, IPR	
He ⁺ (4) 250 keV	0.6	5 x 10 ¹⁵	0.02	LEIBF, IUAC, Delhi	
B ³⁺ (11) 10 MeV	4.5	1.3 x 10 ¹⁴ 1.0 x 10 ¹⁵	0.001, 0.01	3 MeV Tandem accelerator, Bilaspur	
Au ⁷⁺ (197) 80 MeV	4.5	1.3 x 10 ¹⁴	0.22	15 MeV pelletron, IUAC, Delhi	

Sequential irradiation of Au + D, B+D, He+D, Au+He+D

Recoil spectra for ions & neutrons

Energy loss mechanisms, depth of penetration & heat

PKA of low mass ions are closer to neutrons

Is the defect structure similar?

Recrystallized W-foil samples

- 0.8 x 0.8 x 0.1 mm³
- 50 min at 1838 K in Ar+H

- Positron bulk-life time: $\tau_1 = 107.3 \pm 1.7 \text{ ps} (70 \%)$
 - $\tau_2 = 237.3 \pm 5.6 \text{ ps} (30\%)$ Multiple vacancies
 - **Defect-free W: 105 ± 3 ps**

Troev et.al., *JPCS*, *207* (2010) 012033

Annealing: S. Akkireddy et.al. **EX/P4-12**

Defect clusters – TEM studies

Defect cluster size of Au-irradiated samples is similar to neutrons Image analysis by ImageJ software

Note: larger clusters in B-irradiation

Cluster-size decreases with fluence

14

(Renterghem JNM 477 2016, p 80) TEM Studies: P. Sharma et.al. **EX/P2-10**

The reason for cluster size difference is related to spacing between recoils

Spacing between recoils within a cascade (>50 keV)

Au ~ 0.2 nm

Did others observe similar effects?

S. No. Author

10

11

12

14

15

16

17

19

20

21

Ciupinski Ł. et al.

Hwang T. et al.

Kim K.T. et al.

Mason D.R. et al.

Mava P.N. et al.

Year Journal

- 2013 Nuclear Instruments and Methods in Phy. Research B, 317, (159–164)
- El-Atwani O. et al. 2015 Materials Characterization, 99, (68–76)
- Grzonka J. et al. 2014 Nuclear Instruments and Methods in Phy Research B, 340, (27–33)
 - 2016 Nuclear Materials and Energy, 9, (430-435)
- Jager W. et al. 1975 Phys. Stat. Sol. (a), 32, 89
 - 1990 Materials Letters, 9.9. (295-301)
 - 2014 Journal of Physics: Condensed Matter, 26, 37
 - 2018
- 9 Ogorodnikova O.V. et al. 2014 Journal of Nuclear Materials, 451, (379–386)
 - Ova Y. et al 2011 Phys. Scr. T145, (014050)
 - 2015 Journal of Nuclear Materials, 461, (336–340) Oya Y. et al.
 - Ran G. et al. 2014 Journal of Nuclear Materials, 455, (320–324)
- 13 Sakamoto R. et al. 1995 Journal of Nuclear Materials, 220-222, (819-822)
 - Sakurada et al. 2017 Journal of Nuclear Materials, 490, (242-246)
 - Sakurada S. et al. Nuclear Materials and Energy, 9, (141-144) 2016
 - Snoeks E. at al. 1997 Applied Physics Letters, 71, 267
 - Wang H. et al. 2013 Journal of Nuclear Materials, 442, (189–194)
- Watanable H. et al. 18 2014 Journal of Nuclear Materials, 455, (51–55)
 - Xiaoou Yi et al. 2016 Acta Materialia, 112, (105-120)
 - Xiaoou Yi et al. Acta Materialia, 92, (163–177) 2015
 - Zhang Z. et al. 2015 J. Plasma Fusion Res. SERIES, 11
- 22 Zhang Z. et al. 2016 Journal of Nuclear Materials, 480, (207-215)
- Zhang Z.X. et al. 2016 Fusion Engineering and Design, 98–99 (2103–2107) 23

TER-India Heavy ion irradiation experiments show similar cluster size independent of energy and fluence

TRIM calculations were also carried out and found that heavy ions produce several PKA/particle close to each other over a *small depth range*

ITER-IndiaCompetitive capture of mobile FP by seed clusters
and dislocation lines?

Initial line density 3.6 x 10⁸cm⁻²

Mobile FP agglomerate and captured by fewer seeds large scale clusters & branching of lines

Shorter lines (80-1100 nm) Higher density - $1.9 \times 10^{10} \text{ cm}^{-2}$ Sparse clusters - $9.3 \times 10^9 \text{ cm}^{-2}$ Long lines (400-3000 nm) Lower density $- 6.1 \times 10^8 \text{ cm}^{-2}$ Dense clusters $- 1.3 \times 10^{12} \text{ cm}^{-2}$

Mobile FP – captured by several seeds small scale clusters and lines & Long lines

20

Irradiation with He (250 keV) & D (100 keV) ions

Cluster size of He irradiated samples is similar to Au-irradiation

Diffusion & agglomeration of FP to form clusters

Loops and network of dislocations clearly visible in D-irradiation

5 x 10¹⁷ cm⁻² (0.85 dpa)

Line density 9.7 $\times 10^8$ cm⁻² Length 120 – 1900 nm

Loop density $1.4 \times 10^8 \text{ cm}^{-2}$ Size 50 - 100 nm

5 x 10¹⁵ cm⁻² (0.02 dpa)

Line density $1.05 \times 10^9 \text{ cm}^{-2}$ Length 40 - 1000 nm

Cluster density 5.6 x 10^{10} cm⁻² Size 5 – 15 nm

So far:

Correlation between PKA and defect needs to be studied for estimating T-trapping Simulations show interstitials are mobile and show clustering at the end of the cascade Vacancies are immobile at room temperature – leave the imprint of cascade

Interstitial cluster-size seem to depend only on the inter-PKA separation and hence on fluence The capture of mobile FP by existing dislocation lines and existing clusters seem to explain the observed cluster sizes

Vacancy Defects – Positron Annihilation Spectroscopy Studies

MF Barthe et.al, PFMC 2015²⁴

Multiple vacancy for Au, Single for B

The difference is good enough to distinguish between single & multiple vacancies

Fast e⁺- ²²Na source 270 keV

Penetration depth ~ 16 μ m Defect range ~ 5 μ m Defect-freeW: 105 ± 3 ps

Troev et.al., JPCS, 207 (2010) 012033

Saturation indicates dense vacancy clusters in Au-irradiation

Slow e+ beam - 0.1 to 30 keV

Doppler broadening of 511 keV γ

 $S - e^+-e^-$ from valance electrons

 $W - e^+ - e^-$ from core electrons

similar effects: 20 MeV W, MF Barthe et.al²⁶

Similar observations: P.E. Lhuiller et.al, JNM 433 (2013), Troev et.al., NIMB 267 (2009)

TER-India Deuterium creates defects within 400 nm and D atoms are trapped in these defects(?)

No saturation is seen unlike Helium

0.02 Annealed W Ο 100 keV D irradiated W 0.018 m = -0.140.016 W-parameter 0.014 □₽ 0.012 m = -0.08П 0.01 0.54 0.55 0.56 0.57 0.58 0.59 0.6 S-parameter Change in slope indicates annihilation from different core electrons than W

ITER-India Most of the deuterium found to be less than 500 nm

7.3 MeV C⁶⁺

15 keV Cs⁺ ions; 23° to normal 1 s = 0.5 nm

29

Deuterium depth profile in pre-irradiated tungsten

B-irradiated sample seem to trap more D than Au-irradiated sample.

Single vacancy traps more D than multiple vacancies (*Ahlgrene et.al*, *JNM 2012*)

It seems from PAS that B-irradiation creates more single vacancies as opposed to Au.

Ongoing investigations

So far:

Correlation between PKA and defect needs to be studied for estimating T-trapping Simulations show interstitials are mobile and show clustering at the end of the cascade Vacancies are immobile at room temperature – leave the imprint of cascade

Interstitial clustering seem to depend only on the inter-PKA separation and hence fluence The capture of mobile FP by existing dislocation lines and existing clusters seem to explain the observed cluster sizes

Vacancy show the imprint of cascade and hence related to the PKA energy and their spectrum T-trapping takes place predominantly at vacancies

Conclusions & Outlook

Correlation between PKA and defect needs to be studied for estimating T-trapping Simulations show interstitials are mobile and show clustering at the end of the cascade Vacancies are immobile at room temperature – leave the imprint of cascade

Interstitial clustering seem to depend only on the inter-PKA separation and hence on fluence The capture of mobile FP by existing dislocation lines and existing clusters seem to explain the observed cluster sizes

Vacancies show the imprint of cascade and hence related to the PKA energy and their spectrum T-trapping takes place predominantly at vacancies

Accurate quantification of T-retention requires precise estimation of vacancies – using a combination of surrogate ions with controlled fluence of different mass, energy and temperature is urgently needed.

Backup slides

In a given cascade

Crowdions have the highest mobility and formation energy

Mobility of interstitial clusters are limited

The reason for difference lies in the PKA spectra

Larger Sparse Loops in B-Irradiation

- Line density 1.9 x 10¹⁰ cm⁻²
 Line length 80 1100 nm
- Cluster density 9.3 x 10⁹ cm⁻²
- Loop density $6.9 \times 10^8 \text{ cm}^{-2}$

Depth Profile of Point Defects

• Saturation of S - Au irradiation

similar effects: 20 MeV W, MF Barthe et.al

- Fewer defects in Boron
- Vacancy clusters/loops

Au & N-irradiation Produce Small Clusters

