Investigations of the role of neoclassical transport in ion-root plasmas on W7-X

1 Princeton Plasma Physics Laboratory, USA
2 Max-Planck-Institut für Plasmaphysik, Germany
3 Forschungszentrum Jülich, Germany
4 Laboratorio Nacional de Fusión, CIEMAT, Spain
5 Auburn University, USA
6 National Institute for Fusion Science, Japan
7 University of Maryland, USA
8 Chalmers University of Technology, Göteborg, Sweden
9 Technical University of Denmark, Denmark
10 Massachusetts Institute of Technology, USA
11 SUNY Cortland, USA

Corresponding Author: N. Pablant, npablant@pppl.gov

The role of the radial electric field in high performance ion-root plasmas on Wendelstein 7-X (W7-X) is examined and compared with neoclassical predictions. The W7-X stellator is the world’s first large scale optimized stellarator. One of the important targets chosen for optimization during the W7-X design process was the reduction of core neoclassical heat transport. This optimization was targeted for reactor relevant high-density plasmas with $T_e \approx T_i$ in which the neoclassical ambipolar radial electric field is expected to negative throughout the plasmas core.

Measurements of the core radial electric field (E_r) have confirmed that ion-root conditions (negative E_r in the plasma core) have been achieved in W7-X with high-density plasmas and central ECRH. These measured E_r profiles agree well with the neoclassical ambipolar E_r predicted by the code SFINCS. This good agreement provides confidence in the validity of neoclassical calculations in high-density ion-root conditions, and enables initial studies on the role of neoclassical transport in the optimized high-density regime of W7-X.

Profile measurements of electron temperature (T_e), ion temperature (T_i) and electron density (n_e) along with approximations for the average value of Z_{eff} have been used as inputs to the SFINCS code to calculate the ambipolar E_r profile along with neoclassical ion and electron heat flux profiles (Q_{NI}, Q_{NCe}). Finally the total experimental energy input to the plasma from ECRH heating has been compared to the neoclassical heat fluxes to provide a first estimate for the fraction of transport that can be attributed to neoclassical processes in reactor relevant high-density ion-root conditions.