A schematic picture of the repository showing the existing part (in grey) and the planned extension (blue). The repository is situated approximately between 60 and 120 meters below the sea floor. The different rock caverns have different technical barriers, e.g. the silo were most of the radioactivity is placed has both bentonite and concrete barriers.

- The safety assessment follow a ten step methodology.
- The FEP identification and initial state description sets the framework for the following steps in the assessment.
- The purpose of the reference evolution is to provide an overall understanding of the repository evolution, including important uncertainties for the post-closure safety.
- Safety functions defines important safety related aspects of the repository and its environs.
- With the aid of the safety functions and the description of the reference evolution, a number of scenarios and calculation cases are chosen to cover possible future evolutions of the repository system.
- A main scenario and a number of less probable scenarios are analysed to examine whether the total risk from all scenarios is below 10^{-6}.

The assessment period is 100,000 years under which the barriers degrade but also, the radionuclides decay to insignificant levels.

Radionuclides with short half-life, which makes up the major part of the initial radiotoxicity, do not contribute significantly to the total risk. Instead long-lived radionuclides C-14, Mo-93 and Ni-59 contributes most to the risk. During the entire assessment period the risk is below the regulatory risk limit of 10^{-6}, which corresponds to 1 % of the background radiation at the site.