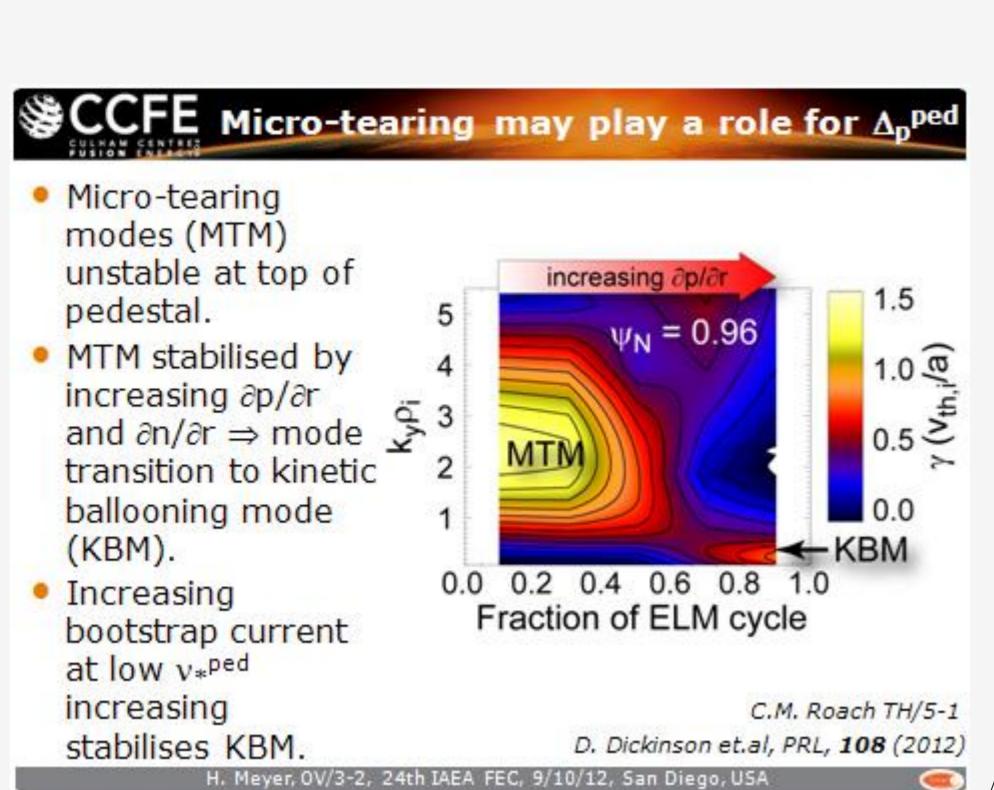
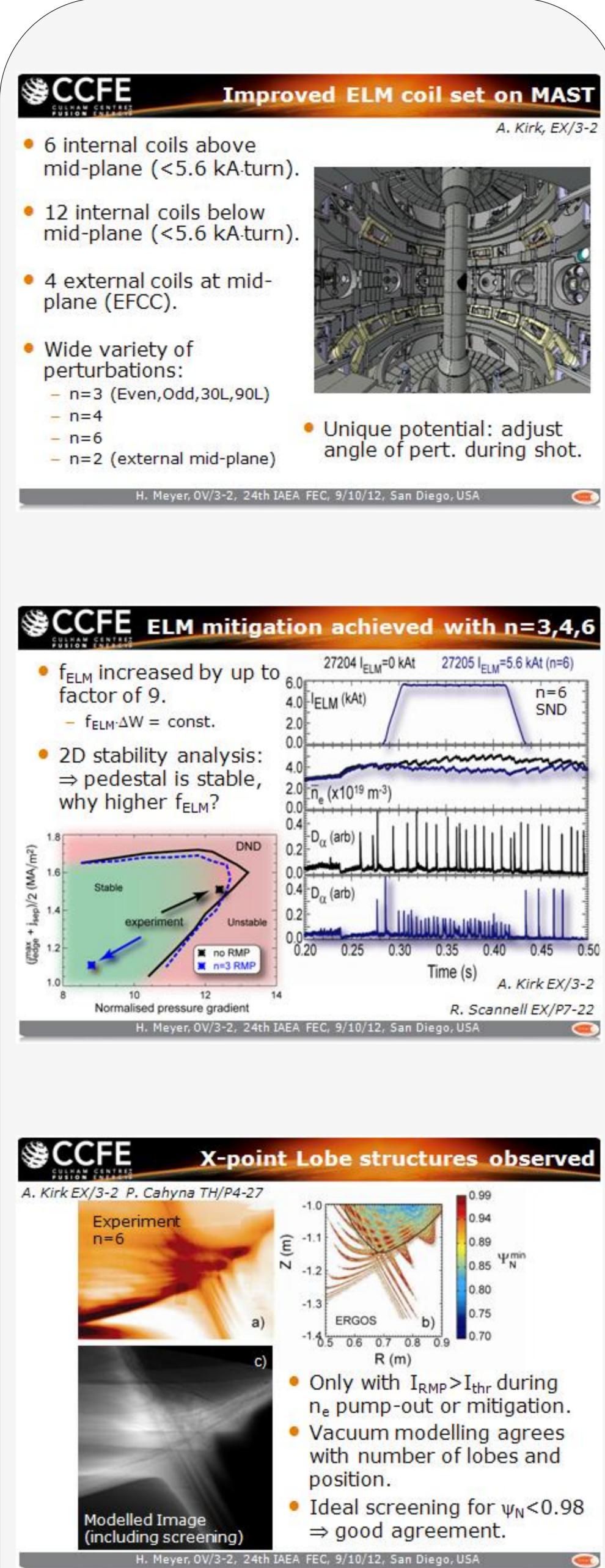
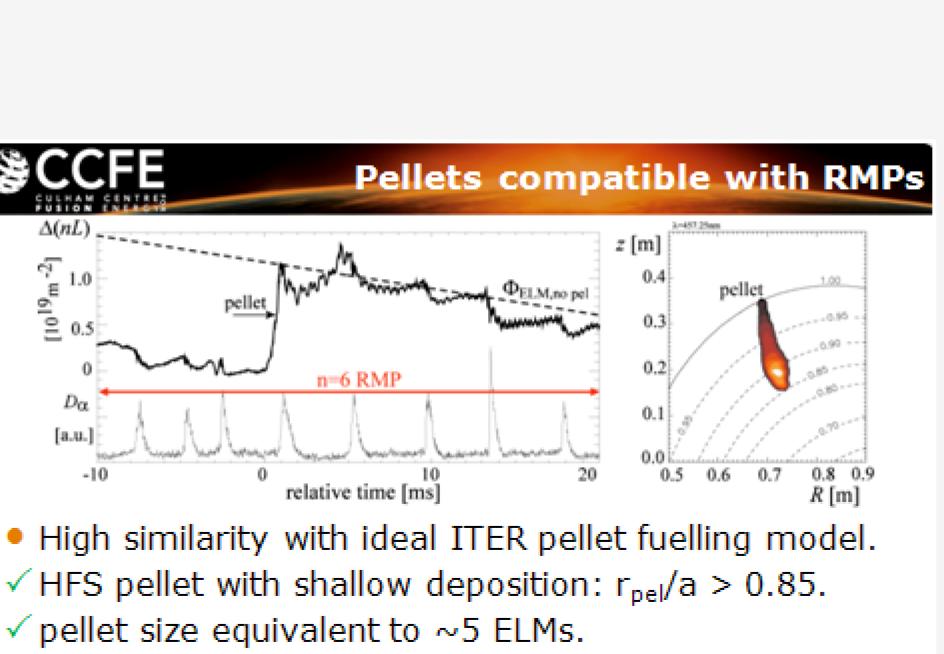


Overview of Physics Results from MAST towards ITER/DEMO and the Upgrade

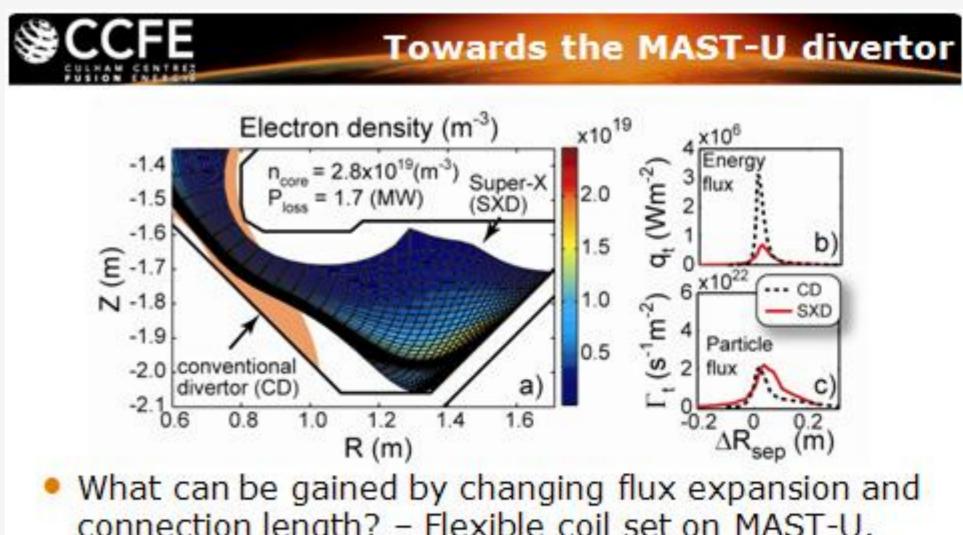

Hendrik Meyer on behalf of the MAST Team and its Collaborators


EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK


Research on MAST is aimed ... Towards ITER: - Understanding pedestal and L-H transition physics. ELM mitigation with resonant magnetic perturbations (RMP). Pellet fuelling. Fast particle physics with super Alfvénic ions. Towards DEMO: Current drive in the presence of super Alfvénic ions. Understanding macroscopic stability at high β. The new MAST Upgrade divertor. Towards the MAST Upgrade: (under procurement) Flexible, closed divertor including Super-X configuration. - On and off-axis beams for better current profile control. - Longer pulses with potential for fully non-inductive flat-top.

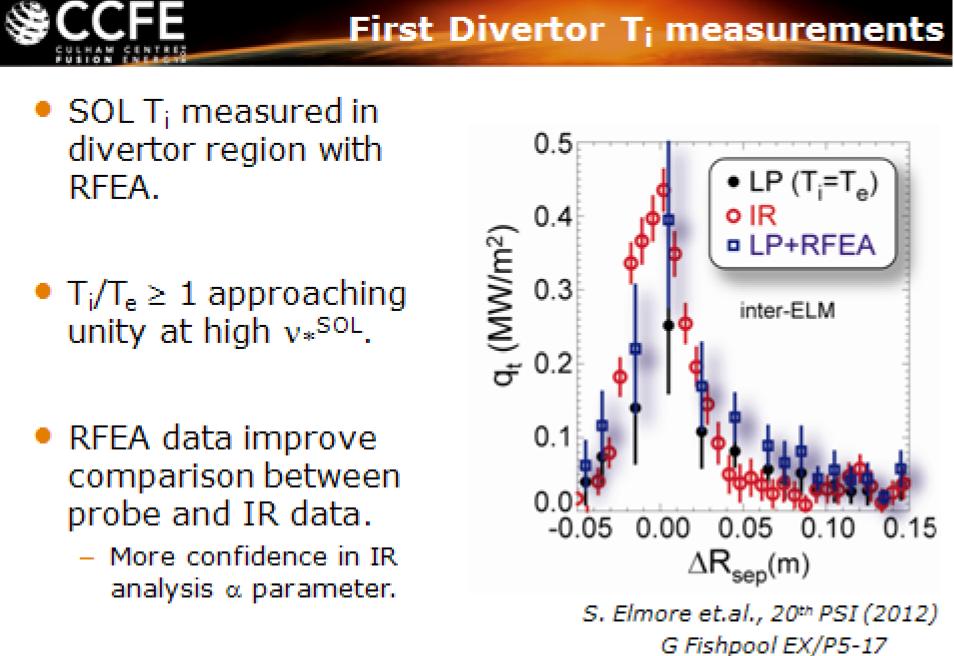
H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

Pedestal & ELMs Pedestal width grows at constant ∇p R. Scannell EX/P7-22 D. Dickinson et.al, PPCF, 53 (2011) of ELM cycle 0.94 0.96 0.98 1.00 Normalised pol. flux ELM cycle profiles constructed from 50 profiles in 3 similar shots \Rightarrow good for micro-stability analysis. Widening of steep gradient region ⇒ peelingballooning modes unstable at lower gradient. H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA &CCFE Micro-tearing may play a role for Δ_p^{ped} Micro-tearing modes (MTM) max ôp/ôr unstable at top of pedestal. ELM cycle MTM stabilised by MTM increasing ∂p/∂r and $\partial n/\partial r \Rightarrow mode \neq \hat{r}$ transition to kinetic ballooning mode (KBM). Increasing 0.98 normalised flux (ψ_N) bootstrap current at low v*ped increasing C.M. Roach TH/5-1 stabilises KBM. D. Dickinson et.al, PRL, 108 (2012) H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA


✓ HFS pellet with shallow deposition: $r_{pel}/a > 0.85$. ✓ pellet size equivalent to ~5 ELMs. ✓ ELM frequency, ELM size and particle loss not degraded by pellet, but counter examples exist

relative size of pellets and ELMs ~8x larger than in ITER. M.Valovič et.al. submitted to PPCF

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA


L-H transition **S**CCFE I-phase like state observed 4–5 kHz D_α dithers precede ELMy Hmode (\widetilde{H}) . Correlation between He+ flow and reduced Da and the substitution of th Doppler spectroscopy Power range were \widetilde{H} is observed decreases with increasing density. H. Meyer ITPA 2012/R. Scannell EX/P7-22 H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA **S**CCFE Filaments erupt at high $\partial v^{He^+}/\partial r$ Cycle start: |∂_rv^{He^T}| inreases as filamentary turbulence decreases. Consistent with turbulence suppression by flow shear. Cycle end: Filaments erupt at highest $|\partial_r v^{He^+}|$ 1.42 R (m) 1.42 1.44 Consistent with vorticity R (m) being expelled by turbulence. Is this consistent with predator-prey dynamics? No simple phase shift Cond. averaging of (a) poloidal and (b) toroidal He+ flow from 50 kHz Doppler spectroscopy, time between flow and turbulence. R. Scannell EX/P7-22 points in (c) Da -intensity are colour coded. H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

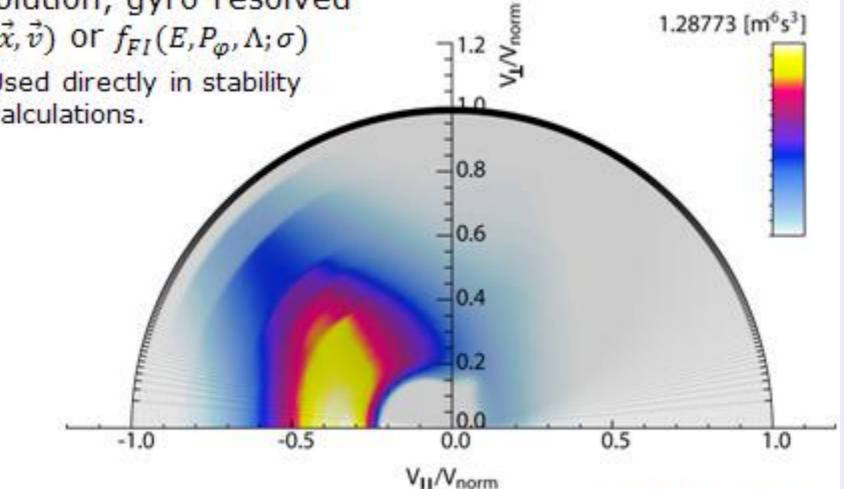
- What can be gained by changing flux expansion and connection length? - Flexible coil set on MAST-U.
- SOLPS simulations to guide design.
- Super-X ⇒ Reduction of energy flux and target T_e. G. Fishpool EX/P5-17, PE. Havlíčková et.al., 20th PSI (2012)

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

Peak heat flux proportional to AWELM A. Kirk EX/3-2 Peak heat flux increases linearly natural • with ELM energy. mitigated < Natural and mitigated E ELMs follow the same § trend. Consistent with $f_{ELM} \cdot \Delta W_{ELM} = const.$ • For $\lim_{M \to \infty} \Delta W_{ELM}^{MHD}$ $f_{ELM\to\infty}$ $q_{ELM} >> q_{inter-ELM}$ ΔW_{ELM}^{MHD} (kJ) - Trend should deviate from linear. A. Thornton et.al., 20th PSI(2012) H. Meyer, OV/3-2,24th IAEA FEC,9/10/12,San Diego,USA ESEL reproduces SOL turbulence Electrostatic interchange Militello et al., PPCF, 54 (2012)

turbulence captures some statistical properties of MAST SOL turbulence.


dimensionless parameter scans to arrive at mid-plane λ_a scaling.

n _{edge} weak increase T _{edge} strong decrease (8)	Increasing;	λα
T _{edge} strong decrease 😕	increasing,	~q
decrease 😣	n _{edge}	weak increase
decrease 😣	T _{edge}	strong
		1.7
	E	
	L _{II}	increase 😊

G Fishpool EX/P5-17 MAST-U super-X

LOCUST-GPU ⇒ high resolution, gyro-resolved 1.28773 [m⁶s³] $f_{FI}(\vec{x}, \vec{v})$ or $f_{FI}(E, P_{\omega}, \Lambda; \sigma)$ - Used directly in stability calculations.

Towards predictive FI capability

S. Pinches TH/P3-34 H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

Towards predictive FI capability

 LOCUST-GPU ⇒ high resolution, gyro-resolved $f_{FI}(\vec{x}, \vec{v})$ or $f_{FI}(E, P_{\varphi}, \Lambda; \sigma)$ - Used directly in stability calculations.

 HAGIS δf ⇒ FI redistribution (non-linear) m=n=1 fishbone modes.

 Synthetic diagnostics to compare to measuremens. - Neutron Camera.

650 652 654 656 658 660 662 664 Wavelength (nm) Fast-ion D_∞ emssion (FIDA)

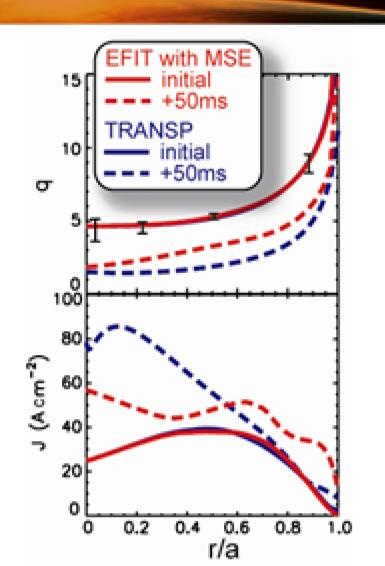
LOCUST-GPU simulated D, emission

S. Pinches TH/P3-34 H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

Current drive and Fast ions

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

SCCFE Slower than NC current diffusion


Poloidal field diffusion is slower than predicted by neoclassical (NC) modelling in dynamic phase.

 Use shot to shot MSE at NBI start to measure j(r,t). - Use to benchmark modelling.

New capability on MAST: JINTRAC integrated modelling suite.

JETTO ⇒ 1.5 D transport.

- UEDGE ⇒ 2D SOL ASCOT-GC/FO ⇒ NBI

D. Keeling et.al., EPS (2011)

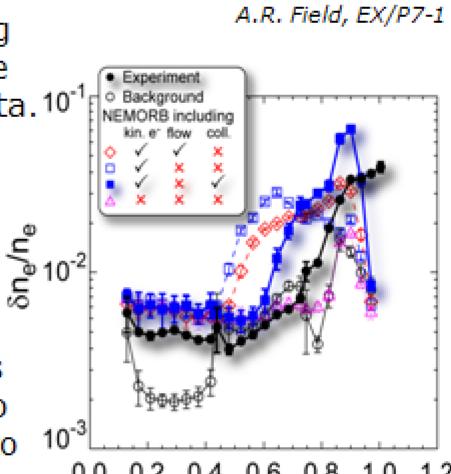
O. Asunta, et.al., EPS (2012) H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

Ion scale turbulence

SCCFE Heat flux modelled with NEMORB

Global gyro-kinetic modelling (NEMORB) shows reasonable agreement with new BES data. 10"

• Turbulence is sensitive to:


Flow,

- Kinetic electrons (KE),

and collisions (C).

 Inclusion of kinetic electrons (KE) and collisions needed to bring fluctuation amplitude to within a factor of 2-3.

- Inclusion of flow should improve agreement further.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 normalised flux radius(ψ_N^{1/2})

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

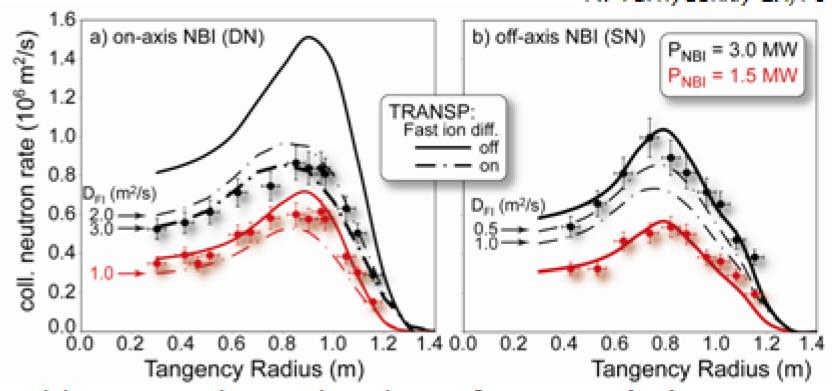
Ion turbulence is inherently 3D

Statistical comparison of turbulence correl. time τ_c with associated time scales.

- Drift: $\tau_{\star} = \frac{\iota_{y}L_{\star}}{}$

- | streaming τ_{st} = - Mag. drift: $\tau_M = \frac{l_x R}{\rho_i v_{th,i}}$

- Shearing: $\tau_{sh} = \left[\left(\frac{B_p}{B} \right) \frac{\partial U_{\phi}}{\partial r} \right]^2$


 Grand critical balance $\Leftrightarrow \tau_c \sim \tau_{st} \sim \tau_M$.

 l_{II} and l_I not independent ⇒ 3D turbulence.

10 100 1000 τ_. [μ sec] τ_{_} [μ sec]

A.R. Field, EX/P7-1

Off-axis NBCD close to classical M. Turnyasnkiy EX/P6-06

 Fishbone modes redistribute fast-ions (FI). - Instability driven by gradient in fast ion distribution f_F1.

Off-axis beam deposition should reduce gradients.

 Confirmed by matching neutron emission profile: DN/On-axis: D_{FI}~3 m²/s; SN/Off-axis: D_{FI} < 0.5 m²/s.

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

SCCFE The MAST Team

H. Meyer¹, I.G. Abel², R.J. Akers¹, A. Allan³, S.Y. Allan¹, L.C. Appel¹, O. Asunta² M. Barnes^{2,5}, N.C. Barratt³, N. Ben Ayed¹, J.W. Bradley⁶, J. Canik⁷, P Cahyna⁸, M. Cecconello⁹, C.D. Challis¹, I.T. Chapman¹, D. Ciric¹, G. Colyer¹, N.J. Conway¹ M. Cox¹, B.J. Crowley¹, S.C. Cowley¹, G. Cunningham¹, A. Danilov¹⁰, A. Darke¹ M.F.M. De Bock¹¹, G. De Temmerman¹², R.O. Dendy¹, P. Denner³, D. Dickinson¹, A.Y. Dnestrovsky¹⁰, Y. Dnestrovsky¹⁰, M.D. Driscoll¹, B. Dudson³, D. Dunai¹³, M. Dunstan¹ P. Dura¹⁴, S. Elmore^{1,6}, A.R. Field¹, G. Fishpool¹, S. Freethy¹, W. Fundamenski¹, L. Garzotti1, Y.C. Ghim1.2, K.J. Gibson3, M.P. Gryaznevich1, J. Harrison1, E. Havlíčková1, N.C. Hawkes¹, W.W. Heidbrink¹⁵, T.C. Hender¹, E. Higchock², D. Higgins¹⁴, P. Hill², B. Hnat¹⁴, M.J. Hole¹⁶, J. Horáček⁸, D.F. Howell¹, K. Imada³, O. Jones¹⁷, E. Kaveeva¹⁸, D. Keeling¹, A. Kirk¹, M. Kočan¹⁹, R.J. Lake¹⁴, M. Lehnen²⁰, H.J. Leggate²¹, Y. Liang²⁰, M.K. Lilley²², S.W. Lisgo²³, Y.Q. Liu¹, B. Lloyd¹, G.P. Maddison¹, J. Mailloux¹, R. Martin¹, G.J. McArdle¹, K.G. McClements¹, B. McMillan¹⁴, C. Michael¹, F. Militello¹, P. Molchanov¹⁸, S. Mordijck²⁴, T. Morgan¹², A.W. Morris¹, D.G. Muir¹, E. Nardon²⁵ V. Naulin²⁶, G. Naylor¹, A.H. Nielsen²⁶, M.R. O'Brien¹, T. O'Gorman³, S. Pamela²⁷ F.I. Parra^{2,5}, A. Patel¹, S.D. Pinches^{1,23}, M.N. Price¹, C.M. Roach¹, J.R. Robinson¹⁴, M. Romanelli¹, V. Rozhansky¹⁸, S. Saarelma¹, S. Sangaroon⁸, A. Saveliev²⁸, R. Scannell¹, J. Seidl⁷, S.E. Sharapov¹, A.A. Schekochihin², V. Shevchenko¹, S. Shibaev¹, D. Stork¹ J. Storrs¹, A. Sykes¹, G.J. Tallents³, P. Tamain²⁵, D. Taylor¹, D. Temple²², N. Thomas-Davies¹, A. Thornton¹, M.R. Turnyanskiy¹, M. Valovič¹, R.G.L. Vann³, E. Verwichte¹⁴, P. Voskoboynikov18, G. Voss1, S.E.V. Warder1, H.R. Wilson3, I. Wodniak8, S. Zoletnik13, R. Zagôrski29 and the MAST and NBI teams.

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

SCCFE

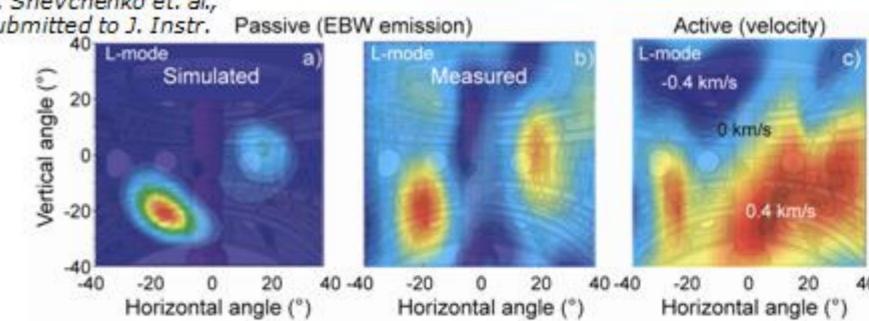
And collaborations

¹EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, UK. ²Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK. 3Department of Physics, University of York, Heslington, York, UK. 4Aalto University, Association EURATOM-TEKES, Espoo, Finland. 5MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA. 6Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, UK. 7Oak Ridge National Laboratory, Oak Ridge, TN, USA. 8Institute of Plasma Physics AS CR vvi, Association EURATOM/IPP.CR, Prague, Czech Republic. 9EURATOM-VR Association, Uppsala University, SE-75120 Uppsala, Sweden. 10 Russian Research Centre, Kruchatov Institute, Institute of Nuclear Fusion, Moscow, Russia. 11 Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. 12DIFFER, Association EURATOM-DIFFER, Nieuwegein, The Netherlands. 13KFKI-RMKI, Association EURATOM, Pf. 49, H-1525 Budapest, Hungary. 14Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry, UK. 15School of Physical Sciences, University of California, Irvine, CA 92697, USA. 16 Plasma Research Laboratory, Research School of Physical Science and Engineering, Australian National University, Canberra, ACT 0200, Australia. 17 Department of Physics, University of Durham, Durham DH1 3LE,UK. 18St Petersburg State Polytechnical University, St Petersburg, Russia. 19 Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany. ²⁰Association EURATOM-FZ Jülich, Trilateral Euregio Cluster, D-52425 Jülich, Germany. ²¹EURATOM/DCU Fusion association, Dublin City University, Glasnevin, Dublin, Ireland. 22 Imperial College of Science, Technology and Medicine, London, UK. 23 ITER Organization, CS 90 046, 13067 St Paul lez Durance Cedex, France. ²⁴The College of William and Mary, McGlothlin-Street Hall, Williamsburg, VA 23187, USA. ²⁵CEA-Cadarache, Association Euratom-CEA, 13108 St Paul-lez-Durance, France. 26Association EURATOM/Risø, National Laboratory for Sustainable Energy, OPL-128, PO Box 49, DK-4000 Roskilde, Denmark. 27 IIFS-PIIM Aix Marseille Université CNRS, 13397 Marseille Cedex20, France. 28 A.F. Ioffe Physico-Technical Institute, St Petersburg, Russia. 29 Association EURATOM/IPPLM, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland.

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

New Tools on MAST


CCFE New diagnostic and plant capabilities

- Improved ELM coil set
 - 6 upper and 12 lower coils.
- Beam emission spectroscopy for ion turbulence.
- Neutron camera for fast ion profiles.
- Fast ion D_α emission to sample f_{FI}
- Poloidal views ⇒ sensitive to trapped FI. Toroidal views ⇒ sensitive to passing FI.
- Spectrum ⇒ sensitive to FI energy.
- 50kHz edge Doppler spectroscopy for edge E_r fluctuations.
- FPGA technology improves diagnostics (SAMI) and data acquisition (event triggering).

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

CCFE Synthetic aperture microwave imaging V. Shevchenko et. al., submitted to J. Instr. Passive (EBW emission) Active (velocity)

- Measure EBW emission with 8 antennas at 16 frequencies ⇒ 3D emission pattern with 100 kHz. Access to edge current profile.
- 3D ray tracing agrees well with observed emission. - Vertical elongation due to shape of antenna array.
- Active probing gives access to 3D velocity profile.

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

SCCFE

In Summary

- MAST research has strengthened the tokamak physics basis in many areas:
- ELM mitigation, pedestal stability, L-H transitions, pellet injection, SOL physics, fast-ion physics and current drive physics.

 New and sometimes unique measurements are fundamental to this progress.

- Experiments and modelling aid the MAST-U design and solidify the physics research plan.
 - The findings with respect to off-axis current drive and SOL width bode well for the MAST-Upgrade.

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

CCFE MAST contributions at this conference

Orals:

A. Kirk EX/3-2 Wed 11:05 C.M. Roach TH/5-1 Thu 14:00

S.E Sharapov OV/4-3 Tue 14:50

Posters:

M.R. Turnyanskiy EX/P6-06 Thu 14:00-18:45

G. Fishpool EX/P5-17 Thu 8:30-12:00

S.D. Pinches TH/P3-34 Wed 8:30-12:30

R. Scannell EX/P7-22 Fri 8:30-12:30

A.R. Field EX/P7-01 Fri 8:30-12:30 P. Cahyna TH/P4-27 Wed 14:00-18:45

P. Gohil ITR/P1-36 Tue 8:30-12:30 (ITPA)

H. Meyer, OV/3-2, 24th IAEA FEC, 9/10/12, San Diego, USA

