Study on TAE-induced Fast-Ion Loss Process in LHD

K. Ogawa, M. Isobe, K. Toi, D. A. Spong1, M. Osakabe, S. Yamamoto and LHD experiment group
National Institute for Fusion Science
1Oak Ridge National Laboratory
Contents

• Introduction
• Experimental setups
• Results of experiments
 – Change of the loss dependence on TAE amplitude
• Setups for orbit-following simulation
• Results of orbit-following simulation
 – Change of the loss dependence on TAE amplitude
• Summary
Introduction

- TAE induced fast-ion loss process has been widely studied in tokamaks and heliotron/stellarator devices to find a method to reduce the \(\alpha \) particle loss in fusion device.
- In LHD, characteristics of transport and loss of fast ions due to TAE have been studied.
 - Little attention has been given to the change of dependence of fast-ion loss on TAE amplitude. It suggests the change of loss process.
- Previous work shows the loss process is changed from convective to diffusive with increase of TAE amplitude in axisymmetric plasma [1].
- This work is devoted for understanding of the loss character in 3D plasma.

Experimental setups
Effect of magnetic axis position on fast-ion orbits and TAE in LHD

- Small magnetic axis position at finite beta R_{mag}
 - Smaller deviation of fast-ion orbit from magnetic flux surface
 - Strong magnetic shear
 -> Narrow TAE gap -> Narrow radial extent of TAE mode

- Large R_{mag}
 - Larger deviation of fast-ion orbit from magnetic flux surface
 - Weak magnetic shear
 -> Wide TAE gap -> Wide radial extent of TAE mode

$R_{\text{mag}}=3.75$ m (Case A), 3.86 m (Case B), 4.00 m (Case C)
A set of apertures has a role in discriminating E and χ of detectable fast ions.

Scintillation points give the information of E and χ of lost-fast ions.

Photomultiplier (PMT) array: Each PMT views particular region of E and χ on the screen. The time response is high enough to observe TAE-induced fast-ion loss.
Experimental results
Typical discharge with TAE

- **Experimental condition**
 - $B_t = 0.6$ T (CCW)
 - $\langle n_e \rangle \sim 1.2 \times 10^{19}$ m$^{-3}$
 - $\langle \beta \rangle \sim 1.5\%$
 - $\langle \beta_{\text{fast}} \rangle \sim 0.7\%$
 - $v_{\text{beam}}/v_A \sim 1.5$

- **Instabilities observed with Mirnov coil**
 - TAE ($m=1/n=1$)
 - Frequency ~ 70 kHz
 - Amplitude of magnetic fluctuation: $\sim 0.5 \times 10^{-4}$ T
 - Peak of eigenfunction: $r/a \sim 0.6$ [1]
 - Bulk plasma pressure excites instability
 - Resistive interchange mode (mainly: $m=1/n=1$)
 - Frequency ~ 1 kHz
 - Peak of eigenfunction: $r/a \sim 0.9$ [2]

Increase of fast-ion loss due to TAE

- Time traces of magnetic fluctuation on TAE frequency and $\Gamma_{\text{fast ion}}$.
 - Increase of fast-ion flux having E of 50-180 keV and χ of 35-45° due to TAE is observed.
 - Fast-ion loss due to resistive interchange mode (RIM) is also observed on entire region of E and χ.
 - To focus on the TAE induced loss, effects of RIM on fast-ion loss are removed using numerical frequency band-stop filter.

Large (Small) TAE leads to (large) small increase of $\Gamma_{\text{fast ion}}$.

Case B ($R_{\text{mag}}=3.86$ m)

#97435 $Bt=0.6$ T, $R_{\text{ax}}=3.60$ m
Dependence of fast-ion loss flux on TAE fluctuation amplitude

- Increment of lost-fast ion flux $\Delta \Gamma_{\text{fast ion}}$ as a function of magnetic fluctuation amplitude $b_{\theta \text{TAE}}$
 - $\Delta \Gamma_{\text{fast ion}}$ is normalized by fast-ion components created by co-NBs ($P_{\text{NBco}} \times \tau_s$).
- In case B, the dependence changes at $b_{\theta \text{TAE}}/Bt$ of 7×10^{-5}.
 - In lower $b_{\theta \text{TAE}}/Bt$ region: $\Delta \Gamma_{\text{fast ion}}/(P_{\text{NBco}} \times \tau_s) \propto b_{\theta \text{TAE}}/Bt$
 - In higher $b_{\theta \text{TAE}}/Bt$ region: $\Delta \Gamma_{\text{fast ion}}/(P_{\text{NBco}} \times \tau_s) \propto (b_{\theta \text{TAE}}/Bt)^2$
- Cases A and C, no clear change of dependence is observed.
 - The change of dependence may appear in unexplored $b_{\theta \text{TAE}}$ region.
Setups for orbit-following simulation including TAE fluctuation
Setups for orbit-following simulation

- **Inside the plasma**
 - Guiding center orbits of fast ions are followed by DELTA5D [2].
 - Including TAE fluctuation (detail is shown in next slide.)
 - Only applicable inside LCFS -> DELTA5D uses equilibrium reconstructed by VMEC2000 [3].

- **Outside the plasma**
 - Lorentz orbit of fast ion is followed.
 - The SLIP measures the E and χ of fast ions according to Larmor motion.

TAE fluctuation included in orbit-following simulation

- Fluctuation of the TAE is mostly perpendicular to the magnetic field line.
 - TAE is classified into shear Alfvén type.

- Fluctuation is modeled as
 \[\delta B = \nabla \times (\alpha B) \]
 \[
 \alpha \propto \frac{m}{\omega_{TAE}} \phi(\psi) \sin \left(n\zeta - m\theta - \omega_{TAE} t \right)
 \]

- Eigenfunction \(\phi \) is calculated with AE3D [1].
 - The profile of TAE agrees with that obtained in experiment [2].

- Frequency chirping down rate is 20 kHz/ms.

Results of orbit-following simulation
Dependence of fast-ion loss flux on TAE fluctuation amplitude

- The E of lost-fast ion: 120-180 keV
 - cf. EXP: 50-180 keV

- The χ of lost-fast ion: 30-40$^\circ$
 - cf. EXP: 35-45$^\circ$

In case B
- The change of dependence is reproduced.
- The critical $b_\theta TAE/Bt$ is 3×10^{-5}.
- Same order as experiment: 7×10^{-5}

In case A
- The dependence is similar to the experimentally observed dependence in low $b_\theta TAE/Bt$ regime.
- The critical value of $b_\theta TAE/Bt$ is predicted in unexplored regions of experiments.
Orbits of fast ions with TAE fluctuation

- **Small TAE**: A fast ion near the confinement/loss boundary is lost immediately due to radial excursion by TAE (convective process).
- **Large TAE**: Orbit of a fast ion confined in the interior region is gradually expanded due to TAE -> Reaches LCFS (diffusive process).

![Orbits of fast ions](image)

- **Small amplitude** ($b_{\text{TAE}}/Bt=7\times10^{-6}$)
- **Large amplitude** ($b_{\text{TAE}}/Bt=5\times10^{-5}$)

- $Bt = 0.6 \text{ T}$
- $E = 180 \text{ keV}$, $\chi = 30 \text{ degrees}$
Possible explanation of the phenomenon

- Small TAE: barely confined fast ions are lost -> convective process is dominant.
- $b_{\theta \text{TAE}}$ increases -> orbits of fast ions existing interior region is expanded, then finally, lost from the plasma.
- Diffusive loss increases with $b_{\theta \text{TAE}}$ -> Exceed convective type loss.
- Plateau region of fast-ion loss flux in case A might be due to the change of the transport of barely confined fast ions.

Convective type loss
$\Delta \Gamma_{\text{fast ion}}/(P_{\text{NBco}} \times \tau_s) \propto b_{\theta \text{TAE}}/Bt$ [1]

Diffusive type loss
$\Delta \Gamma_{\text{fast ion}}/(P_{\text{NBco}} \times \tau_s) \propto (b_{\theta \text{TAE}}/Bt)^2$ [1]

Summary

• Characteristics of TAE-induced fast-ion loss process are studied in the wide parameter ranges of LHD using SLIP.

• Dependence of $\Delta \Gamma_{\text{fast ion}}$ on $b_{\theta\text{TAE}}$ changed at certain $b_{\theta\text{TAE}}$ in case B ($R_{\text{mag}} = 3.86$ m).
 – Low $b_{\theta\text{TAE}}$ region: $\Delta \Gamma_{\text{fast ion}}/(P_{NB\text{co}} \times \tau_s) \propto b_{\theta\text{TAE}}/Bt$
 – High $b_{\theta\text{TAE}}$ region: $\Delta \Gamma_{\text{fast ion}}/(P_{NB\text{co}} \times \tau_s) \propto (b_{\theta\text{TAE}}/Bt)^2$

• To study the observed phenomenon in detail, simulation based on orbit-following models that incorporated magnetic TAE fluctuation is performed.
 – The simulation reproduces the change of fast-ion loss dependence on TAE fluctuation amplitude.
 – It suggests the change of loss process from convective to diffusive character as predicted in axisymmetric model.

• The observed change of fast-ion loss dependence on TAE fluctuation amplitude can be explained by the change of the dominant loss process.