ITER-TBM Program activities in Europe, China and India

Presented by:
E. Rajendra Kumar
Indian TBM Team
Institute for Plasma Research, India

Contributors:
Aiello Giacomo, Europe TBM Team
Kaiming Feng, China TBM Team and
E. Rajendra Kumar, India TBM Team

24th FEC, San Diego, CA, USA, (8-11 October 2012)
Please note: Dedicated posters are presented by individual authors of the following papers:

1. FTP/4-4Ra Status of LLCB TBM R&D Activities in India
2. FTP/4-4Rb Activities on the Helium Cooled Lithium Lead Test Blanket Module for ITER
3. FTP/4-4Rc Current Progress of Chinese Solid Breeder TBM

This presentation will try to focus on the contents provided in these papers as presented for this conference.
TBM Program in ITER

TBM = Test Blanket Module

Tritium Breeding Blankets are complex components, exposed to severe working conditions, needed in DEMO. But, not present in ITER. ITER is an unique opportunity to test the mock-up of DEMO blanket in a DEMO-relevant conditions.

One of the ITER missions: “ITER should test tritium breeding module concepts that would lead in a future reactor to tritium self-sufficiency, the extraction of high grade heat and electricity production. All the activities related to this mission forms the “TBM Program”.

All ITER Members (CN, EU, IN, JA, KO, RF, US) participate in the TBM Program. Of them, CN, EU, IN, JA and KO planning to test their TBMs in ITER.

Each TBM Set (TBM + Shield Block) and the associated ancillary systems (cooling system, Tritium extraction system, measurement systems, etc..) are defined as Test Blanket System (TBS)
TBM Assembly in ITER

Typical TBM Dimension:
1.66 m (h) x 0.48 m (w) x 0.54 m (t)

Each TBM will be tested in one half of Radial Port of ITER
3 ITER equatorial ports (opening of 1.75 x 2.2 m²) allotted for TBM testing

TBMs installed within a water-cooled steel frame (thick. 20 cm), half-port size ➔ 6 TBMs
Test Blanket Systems in ITER

The 6 TBSs to be installed in ITER during H/He phase are the following:

(PM : Port Master, TL : TBM Leader)

<table>
<thead>
<tr>
<th>Port No. and PM</th>
<th>TBM Concept</th>
<th>TBM Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (PM : EU)</td>
<td>HCLL (TL : EU)</td>
<td>HCPB (TL : EU)</td>
</tr>
<tr>
<td>18 (PM : JA)</td>
<td>WCCB (TL : JA)</td>
<td>HCCR (TL : KO)</td>
</tr>
<tr>
<td>2 (PM : CN)</td>
<td>HCCB (TL : CN)</td>
<td>LLCB (TL : IN)</td>
</tr>
</tbody>
</table>

HCLL : Helium Cooled Lithium-Lead, (Helium /Pb-Li);
HCPB : Helium Cooled Pebble Beds (Ceramics/Beryllium)
WCCB : Water Cooled Ceramic Breeder, (Ceramics / H2O);
HCCR : Helium Cooled Ceramic Reflector (Ceramics/Beryllium/Graphite)
HCCB : Helium Cooled Ceramic Breeder (Ceramics / Be),
LLCB : Lithium-Lead Ceramic Breeder (Helium /Pb-Li + Ceramics)

In order to correctly represent the corresponding DEMO breeding blanket mock-ups, all the TBMs require to use Reduced Activation Ferritic-Martensitic steels.
Licensing and Quality Plan for TBM

Being a part of ITER, TBM should also go through the same process of licensing as ITER.

ITER Organization has included TBM descriptions in safety documents presented to French authorities. The TBSs are included in the ITER RPrS (Rapport Preliminaire de Surété).

The present strategy for the TBM Program is to assume that all accidental sequences that could involve TBMs remain within the envelope cases assessed for ITER. This requires appropriate safety analysis.

TBSs components should comply with rules for Pressurized and Nuclear Pressurized Equipment (ESP & ESPN rules) and SDC-IC. This requirement implies that TBSs design and manufacturing should be validated by a notified body.

In the TBM Program, TBM parties are responsible for the functional specifications, design and manufacturing of the TBSs. IO is responsible for the operation.

An Arrangement (TBMA) has to be signed between IO and each TBS IM responsible. In these arrangements, the details of the QA procedure and the Quality Plan (QP) will be mentioned.
European Helium Cooled Lithium Lead Test Blanket System (HCLL-TBS)
The HCLL blanket concept is based on the use of:

- **Liquid eutectic Pb-15.7Li** as *breeder, neutron multiplier and tritium carrier*
- **Helium** (8 MPa, 300-500°C) as *coolant*
- **Eurofer97**, a Reduced Activation Ferritic-Martensitic steel, as *structural material*

The corresponding Test Blanket Module (TBM) and its auxiliary systems will be installed in equatorial port #16 in ITER (shared by the two EU concepts).
The conceptual design of the HCLL-TBM

Maximum geometrical similarity between the design of the TBM and the corresponding DEMO modules.

Current developments:
- Compliance with regulation (PED, French ESPN order)
- Structural analyses under ITER pulsed plasma operation
- Fabrication and assembly techniques
- Integration of sensors

EU-TBM
The HCLL-TBM Ancillary Systems

- Detailed PFD & P&ID of all subsystem have been developed
- Preliminary operation and maintenance plan have been produced
- Selection of industrial components available on the market has been done
- More experimental tests are needed for components not available on the market (mainly related to tritium technology)

The Tritium Extraction System: TEU+TRS

TEU: Gas Liquid Contactor (450°C, 40% efficiency)

TRS: 2 getter columns (ZrCo alloy) working at room temperature. One in adsorption, the other in regeneration to insure continuous operation.
HCLL TBS Integration in ITER

Integration of sub-systems in the AEU

Helium Cooling System

Diagnostic

Chassis

Tritium Loops: part of HCPB/TES and HCLL/TRS

PbLi Loop

Pipe Forest

Remote handling in Port Interspace

The TBM-Set: TBM+Shield

Integration of the HCS in to ITER CVCS
The TBM Experimental Programme

- A list of possible experiments to be performed in different fields (electromagnetics, neutronics, tritium generation/extraction, MHD, corrosion, etc.), during the different ITER phases, has been proposed.
- A preliminary work-plan aimed at filling the gap between the present R&D level and the required one has been defined. Experimental campaigns are undergoing in several EU laboratories.
Chinese Helium-Cooled Ceramic Breeder Test Blanket System (HCCB-TBS)
Basic design characteristics:

- **TBM structure**: Sub-module arrangement
- **Structure material**: RAFM (CLF-1);
- **Tritium breeder**: Li_4SiO_4 pebble bed, 80%Li-6;
- **Neutron multiplier**: Be pebbles bed;
- **Coolant and purge gas**: Helium gas
- **Coolant pressure**: 8MPa
- **Coolant temperature**: 300 °C (inlet) -500 °C (outlet)
- **Tritium production ratio (TPR)**: 0.0505 g/d
CN HCCB TBM Auxiliary Sub-system Design

Helium Cooling Systems (HCS)

- Installed in TCWS;
- Common HCS for two TBM's;
- Two loops:
 - the primary helium circulation loop with all components,
 - the secondary heat removal loop
- A minimum net foot print size—about 93m², 5m height.

Tritium Extraction Systems (TES)

Flow chart and Layout Tritium Extraction System (TES)

TES is to remove the tritium produced in TBM and to control the gas composition of the low-pressure purge gas. For reasons of radiological safety, the system must be installed in a glove box.

Coolant Purification Systems (CPS)

The CPS is connected to the helium cooling loop at both sides of the circulator of HCS in parallel. For safety purpose, the system must be installed in a glove box as secondary containment.

Tritium Measurement System (TMS)

Flow chart of the TMS

Layout of the TMS
Progress on Ceramic Breeder and Beryllium Pebbles R&D

- Two kinds of ceramic breeders (Li_4SiO_4, Li_2TiO_3) for HCCB TBM are being developed at different institutions in China;
- Lithium orthosilicate (Li_4SiO_4) pebbles will be the primary option in the CN HCCB TBM. The Li_2TiO_3 will be a candidate tritium breeder.

- **Melt spraying method** for Li_4SiO_4 have good sphericity, and high density.
- **Freeze-sintering process** for Li_4SiO_4 have good mechanical properties;
- **Sol-gel method** for Li_2TiO_3 Pebbles have good surface feature.

Main properties (Li_4SiO_4) by melt spraying method

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative density</td>
<td>94% TD</td>
</tr>
<tr>
<td>Li_4SiO_4 phase content</td>
<td>≥90%</td>
</tr>
<tr>
<td>Closed porosity</td>
<td>0.72%</td>
</tr>
<tr>
<td>Open porosity</td>
<td>5.2%</td>
</tr>
<tr>
<td>Average crush load</td>
<td>7.0 N</td>
</tr>
<tr>
<td>Specific surface area</td>
<td>1.092 m^2/g</td>
</tr>
</tbody>
</table>

Beryllium Pebbles R&D

- Be metal of high performance has been developed in China.
- Be pebbles have been produced by **Rotating Electrode Process (REP)** method in China. Related performance tests are on going.
- A new project to develop higher quality Be pebbles in China has being implemented for the ITER project.
Development of Helium Coolant Test Loop

- The construction of a small He Test Loop to validate circulator technology will be completed this year.
- The He test loop has two impellers. It uses aerostatic bearings to avoid oil lubricating.

Main parameters of circulator design

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Maximum flow rate /kg/s</th>
<th>Inlet pressure /MPa</th>
<th>Maximum pressure head /MPa</th>
<th>He inlet/outlet temperature /℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulator</td>
<td>~0.35</td>
<td>8</td>
<td>0.4</td>
<td>~50/65</td>
</tr>
</tbody>
</table>

- A prototyped Helium Test Loop to validate TBM components and design is also to be built in SWIP. The flow rate will up to 1.3kg/s.
Two RAFM alloys have been developed in China; CLF-1 in SWIP and CLAM in ASIPP.

1-ton ingot of CLF-1 steel were recently produced by vacuum induction melting and electro-slag re-melting methods.

The optimization of the melting technique for the larger ingots to 3 tons is underway.

A small-sized mock-up of U-shaped first wall is completed;
Two kinds of fabrication method (EBW, HIP) of U-shaped FW have been considered;
Full sized mock-up of U-shaped first wall is under way.
Indian Lead-Lithium Ceramic Breeder Test Blanket System (LLCB-TBS)
Indian LLCB TBM

Structural Material

- IN-RAFMS

Breeder

- Pb-Li, \(\text{Li}_2\text{TiO}_3 \)

Coolants

- Helium & Pb-Li

Helium Inlet/Outlet Temp.

- 300 – 400 °C

Helium Pressure

- 80 bar

Pb-Li Inlet/outlet Temp.

- 300-450 °C

T Purge gas

- Helium/ 1.2 bar

Diagram:

- Top Plate assembly
- Outer Back Plate
- Inner Back Plate
- Helium Inlet/Outlet
- Li\textsubscript{2}TiO\textsubscript{3} Inlet/Outlet
- Pb-Li Inlet pipe
- Pb-Li Outlet pipe
- He purge gas Inlet/Outlet

Legend:

- Blue: PbLi
- Magenta: \(\text{Li}_2\text{TiO}_3 \)
- Green: IN-RAFMS
- Red: Beryllium
IN LLCB TBS Auxiliary Systems

- Process flow diagrams and P&Ids for auxiliary systems
- Systems design are according to ITER-Interface requirements. Maintenance plan has been prepared.
- R&D for some of the critical components are under progress
- Safety related requirements for these systems has been included in the pre. RPRS
Liquid Metal R&D Activities

Pb-Li Corrosion loop at IPR

Lead-lithium Diagnostics Development

Lead-lithium Production

Joint MHD Experiments with IPUL, Latvia

- SS316 L Test sections: Rectangular, circular flow cross-sections, 90° bends, rectangular to circular flow transition.
- Validation of MHD numerical code
Lithium Titanate Pebbles R&D in India

Process development for the synthesis and fabrication of pebbles to meet the specifications for TBM and characterization.

1. Sol-Gel Process
2. Solid State Reaction, Extrusion & Spherodization

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Specifications</th>
<th>Target</th>
<th>Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Spherical shape with Diameter range</td>
<td>0.2-1.2 mm</td>
<td>~0.2 – 1.2 mm</td>
</tr>
<tr>
<td>2.</td>
<td>Density</td>
<td>3.2 g/cm³</td>
<td>3.17-3.02 g/cm³</td>
</tr>
<tr>
<td>3.</td>
<td>Density (TD %)</td>
<td>90 %</td>
<td>88-90%</td>
</tr>
<tr>
<td>4.</td>
<td>Lithium Density</td>
<td>0.4 g/cm³</td>
<td>0.4 g/cm³</td>
</tr>
<tr>
<td>5.</td>
<td>Open Porosity (%)</td>
<td>7 %</td>
<td>7 %</td>
</tr>
<tr>
<td>6.</td>
<td>Closed Porosity (%)</td>
<td>5 %</td>
<td>5 %</td>
</tr>
<tr>
<td>7.</td>
<td>Grain Size</td>
<td>1 – 6 μm</td>
<td>1.2-2μm</td>
</tr>
<tr>
<td>8.</td>
<td>Surface area (BET)</td>
<td>0.18 m²/g</td>
<td>0.13 m²/g</td>
</tr>
<tr>
<td>9.</td>
<td>Thermal Conductivity@ 500°C</td>
<td>2.5 W/m K</td>
<td>Yet to be confirmed</td>
</tr>
<tr>
<td>10.</td>
<td>Thermal Expansion @ 500°C (delta L/Lo)</td>
<td>0.8 %</td>
<td>Yet to be done</td>
</tr>
<tr>
<td>11.</td>
<td>Crushing Load</td>
<td>15 - 45 N/m²</td>
<td>16 – 20 N/m²</td>
</tr>
</tbody>
</table>
IN-RAFMS & Fabrication Technologies Development

- 3 nos. of 3 ton melts completed
- Chemical Composition under control
- RAFMS filler wire development completed

IN-RAFMS INGOT
Forging of IN-RAFMS
IN-RAFMS Plates

First Wall Mock-up for HIP Trials
First Wall Mock-up fabrication by Laser Welding
L-Shaped He Channels in the Back Plate
ITER Operation and TBM Testing Programme

ITER Commissioning and Operations

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM installation</td>
<td>EM-TBM</td>
<td>TN-TBM</td>
<td>NT/TM-TBM</td>
<td>INT-TBM</td>
<td></td>
</tr>
</tbody>
</table>

Key Events:
- **Hydrogen Helium Phase Complete**: Q=10 Long Pulse, 100% Tritium throughput capability, 100% T-fuelling capability.
- **Deuterium Phase Complete**: Q=10 H-Mode Studies, Trace-T Studies, D Plasmas on W Divertor, D H-Mode Studies, Pre-Nuclear Shutdown & Divertor Change.

Timeline:
- **2021**: Full Heating Power @ Short Pulse, N Licensing validation.
- **2022**: Plasma Development and H&CD Commissioning, All TBM installed.
- **2023**: Phase 3 Machine Assembly / Regulatory Shutdown, Full H&CD, TBM & Diagnostics Commissioning.
- **2024**: He H-Mode Studies, Pre-Nuclear Shutdown & Divertor Change.
- **2025**: Nuclear License, D Plasmas on W Divertor, D H-Mode Studies, Trace-T Studies.
- **2026**: 100% Tritium throughput capability, 100% T-fuelling capability.
- **2027**: Q=10 Long Pulse.
- **2028**: TBM installation.
- **2029**: EM-TBM, TN-TBM, NT/TM-TBM, INT-TBM.
- **2030**: ITER Commissioning and Operations Complete.

Adopted from IO presentation
ITER-TBM program is essential to:
- Achieve a key element of the ITER Mission “demonstrate the scientific and technological feasibility of fusion power for peaceful purposes”
- Achieve the most critical milestone in fusion nuclear technology research: testing in the integrated fusion environment.

CN, EU, JA, KO, and IN are committed to deliver their TBM Systems for testing in ITER from the first phase of ITER operation.

R&D work in major areas such as, structural material characterization (mechanical properties, qualification of production processes), fabrication technologies, Lead-Lithium loop components, and tritium recovery & accounting systems are in full swing at EU, CN & IN TBM programs.

Generic TBMA has been finalized and approved by ITER Council. IMs planning to install the TBS are preparing their individual TBMA for signature.
Thank you