DIII-D Research Toward Resolving Key Issues for ITER and Steady-State Tokamaks

by
D.N. Hill for the DIII-D Team
Lawrence Livermore
National Laboratory

Presented at
2012 IAEA Fusion Energy Conference
San Diego, California

October 8–13, 2012

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and DE-FC02-04ER54698. LLNL-PRES-588692
DIII-D is Advancing the Physics Basis Needed to Support Fusion Energy Development

- Address ITER challenges and validate scenarios
- Develop basis for steady-state operation
- Advance predictive capability for fusion
DIII-D is Advancing the Physics Basis Needed to Support Fusion Energy Development

- Address ITER challenges and validate scenarios
- Develop basis for steady-state operation
- Advance predictive capability for fusion

DIII-D is Advancing the Physics Basis Needed to Support Fusion Energy Development
DIII-D is Preparing the Basis for ITER Operation

Match key plasma conditions in ITER where possible

- Address critical issues
 - Scenarios at low torque
 - Stability
 - ELMs
 - Disruptions

Shape

I/αB

β, βN

T_e/T_i

Collisionality

Rotation
Stationary Low-Torque ITER Baseline Discharges Are Maintained for Multiple Current Relaxation Times

Develop experience with low-torque operation for ITER – access, stability, and confinement at low rotation

- ITER – equivalent NBI torque
- ELMing H-mode
 - Matches shape
 - Matches I/aB
- Broad ECCD near q=3/2 controls tearing modes

G. Jackson, EX/P2-08
Successful Integration of Key Elements of Tearing Mode Control for ITER

- **Real-time** control of EC power and mirror steering to \(q=2 \) surface

- PCS detects growing 2/1 tearing mode and turns on ECCD

- **Real-time** control provides complete stabilization of m/n=2/1 tearing mode
Pellet Pacing in ITER Baseline Scenario Yields 12x Higher ELM Frequency

ITER shape, geometry

\[\beta_N = 1.8 \]

1.3 mm pellets 100-150 m/s

- Reduced ELM energy loss
- Minimal change in confinement
- No fueling increase

L. Baylor, EX/6-2
Pellet Pacing in ITER Baseline Scenario Yields 12x Lower ELM Divertor Heat Pulse

- Reduced ELM energy loss
- Minimal change in confinement
- No fueling increase

ITER shape, geometry

\[\beta_N = 1.8 \]

1.3 mm pellets 100-150 m/s

\[f_{\text{pellet}} \times \Delta q_{\text{div}} = \text{const} \]

L. Baylor, EX/6-2
Sustained RMP ELM Suppression Extended to ITER Baseline Scenario

- n=3 perturbation with internal coils
- Match ITER
 - Shape and I/aB
 - $\beta_N = 1.8$ and $\nu^* = 0.12$
- Suppression at low collisionality using n=2 configuration
- ELM suppression also shown in helium plasmas
Operating Range for ELM-free QH-mode Extended to ITER Relevant Torque Using External 3D Coils

- Achieved using external n=3 coils to drive edge rotation shear

QH-mode is an attractive candidate scenario for ITER

K. Burrell, EX/P4-08
Operating Range for ELM-free QH-mode Extended to ITER Relevant Torque Using External 3D Coils

Neutral Beam Torque

-1 0 +1 (Nm)

ITER-equivalent NBI torque

• Achieved using external n=3 coils to drive edge rotation shear

QH-mode is an attractive candidate scenario for ITER

K. Burrell, EX/P4-08
Operating Range for ELM-free QH-mode Extended to ITER Relevant Torque Using External 3D Coils

Neutral Beam Torque

QH

ITER-equivalent NBI torque

• Achieved using external n=3 coils to drive edge rotation shear

Excellent energy confinement quality at low rotation: $H_{98y2} = 1.3$

QH-mode is an attractive candidate scenario for ITER

K. Burrell, EX/P4-08
Error Field Correction Strategies Must Include Full Plasma Response of All Field Components

Proxy error field experiments show that correction fields increase NTV damping

C-coil Proxy
n=1 error

I-coil Correction

IPEC calculated n=1 NTV damping

“Test Blanket Module”

Similar results with localized error field

Localized heating tests fast ion transport models

H. Reimerdes, EX/P4-09 G. Kramer, ITR/P1-32
R. Buttery, EX/P4-31 N. Ferraro, TH/P4-21
DIII-D Disruption Experiments Point Toward Controlled Dissipation of Runaway Electrons In ITER

Radial stability provides time to dissipate runaways

High-Z gas injection increases runaway electron dissipation

DIII-D experiments provide the physics basis for RE control in ITER

E. Hollmann, EX/9-2
V. Izzo, TH/P3-13
DIII-D is Advancing the Physics Basis Needed to Support Fusion Energy Development

- Address ITER challenges and validate scenarios
- Develop basis for steady-state operation
- Advance predictive capability for fusion
Coordinated Pedestal Characterization Experiments are Confirming EPED Prediction of the ITER Pedestal

New High Resolution Thomson Scattering

- First-principles stability calculation uses no fitted parameters

R. Groebner, EX/11-4
Pedestal Evolution During ELM Cycle is Observed to Be Consistent With Predictions of EPED Model

New High Resolution Thomson Scattering Shows Pedestal Growth

Graph

- First-principles stability calculation uses no fitted parameters
- Kinetic ballooning modes (KBM) limit local pressure gradient
- Pedestal width grows at constant ∇P until ELM occurs at peeling ballooning mode limit

P. Snyder, TH/P3-17
Modulated RMP Experiments Point to Island at Top of Pedestal Inhibiting Pedestal Growth and ELMs

- **RMP rotation reveals MHD response**
 - Displacements seen in X-point SXR imaging
 - Compared with vacuum field and two-fluid MHD simulation

- **Mechanism: RMP limits width of pedestal**
 - RMP field resonant near top of pedestal
 - Island growth where $\omega_e \sim 0$
 - Island limits inward expansion of high-gradient pedestal
Edge Fluctuation and Flow Measurements Are Beginning to Reveal H-mode Transition Dynamics

- L-H transition trigger is key to predicting threshold power
- Repetitive sampling of L-H transitions during limit cycle oscillations
- New data shows interplay between HF turbulence and LF turbulent flow

G. Tynan, EX/10-3 L. Schmitz, EX/P7-17
Z. Yan, EX/P7-05 P. Gohil, ITR/P1-36
Stiffness refers to a sharp increase in transport above a critical ∇T

H-mode heat flux scan shows electrons are more stiff than ions

TGLF agrees with results of dedicated H-mode stiffness experiment as it does with the broader H-mode database
Critical-Gradient Transport Experiments Test Profile Stiffness Predictions

- Vary ECH location to change L-mode ∇T_e with $T_e \sim$ constant
- Transport exhibits critical gradient threshold, agrees with simulation
- Sharp rise in measured T_e fluctuations indicates TEMs are important, providing excellent test for gyrokinetic simulations

C. Holland, EX/P7-09
Critical-Gradient Transport Experiments Test Profile
Stiffness Predictions

- Vary ECH location to change L-mode ∇T_e with $T_e \sim$ constant
- Transport exhibits critical gradient threshold, agrees with simulation
- Sharp rise in measured T_e fluctuations indicates TEMs are important, providing excellent test for gyrokinetic simulations

C. Holland, EX/P7-09
Off-Axis Beam Allows Variation of Alfvén Eigenmode Drive and Fundamental Tests of Stability Models

- Vary fast ion pressure gradient to change Alfvén Eigenmode (AE) drive/stability
- Reversed-Shear AEs mostly stable with off-axis injection
- Comparisons with kinetic codes (GTC, GYRO, TAEFL) are underway

W. Heidbrink, EX/P6-22
DIII-D is Advancing the Physics Basis Needed to Support Fusion Energy Development

- Address ITER challenges and validate scenarios
- Develop basis for steady-state operation
- Advance predictive capability for fusion

DIII-D | ITER | FNSF | DEMO
Steady-State Fusion Requires Broad Current and Pressure Distributions

- Steady state fusion requires:
 High pressure + High self-driven current

- High normalized beta, β_N

- Current distributed off axis is favorable for steady-state, stability, and confinement

Off-axis NBI and ECCD enable steady-state scenario research
DIII-D Neutral Beam Successfully Modified for Off-Axis Injection to Broaden Current and Pressure Profiles

Off-axis Neutral Beam Can Be Adjusted During An Experiment

5 min to raise beam, 30 min start to finish
Off-Axis NBI Produces Broad Current & Pressure Profiles with Sustained $q_{\text{min}}>2$ for Higher β_N Stability Limits

- $q_{\text{min}}>2$ avoids 2/1 tearing modes
- Off-axis NBI broadens current and pressure profiles
- Plasmas have higher predicted stability limits ($\beta_N \sim 4$)

C. Holcomb, EX/1-5
ITER/FNSF Equivalent Performance Demonstrated with Relaxed $q_{\text{min}} \approx 1.5$

- Off-axis beam sustains stable stationary operation
- $f_{\text{NI}} = 70\%$
- Modeling shows potential to raise β_N and f_{NI} further
\(q_{\text{min}} \approx 1.5 \) Scenario Appears Compatible with Radiating Mantle for Divertor Heat Flux Reduction

Peak divertor heat flux reduced \(~35\%\)

\(P_{\text{RAD}} \) doubles without significant performance degradation

C. Holcomb, EX/1-5
T. Petrie, EX/P5-12

Neon 5.2 t l/s
DIII-D is Developing the Physics Basis for Integrated Steady-State Divertor Solutions

- Critical issues
 - Predicting ITER requirements
 - New solutions for steady-state fusion

- New unified ITPA data base indicates narrow heat flux for ITER
 - Gradients below ballooning limits
 - Motivates and supports physics modeling

SOL heat flux width: \(\lambda_q \propto 1/B_{pol} \)

![Graph showing SOL heat flux width](Courtesy T. Eich)

- JET
- C-Mod
- AUG
- D3D

\(R^2 = 0.77 \)
Snowflake Divertor Configuration Reduces ELM and Steady-State Heat Flux

- SF configuration reduces heat flux 2-3X by flux expansion
- $\Delta W(ELM)$ reduced
- Core confinement ($H_{98y2} > 2$) and pedestal constant
Snowflake Divertor Configuration Reduces ELM and Steady-State Heat Flux

- SF configuration reduces heat flux 2-3X by flux expansion
- $\Delta W(\text{ELM})$ reduced
- Core confinement ($H_{98y2} > 2$) and pedestal constant
- ELM heat flux reduced dramatically with gas puffing
DIII-D is Advancing the Physics Basis Needed to Support Fusion Energy Development

Address ITER challenges and validate scenarios

Develop basis for steady-state operation

Advance predictive capability for fusion
DIII-D is Advancing the Physics Basis Needed to Support Fusion Energy Development

- Increased electron heating for burning plasma conditions
- Diagnostic and 3D field upgrades for fusion science
- Increased off-axis current drive and new divertor configurations
Other DIII-D Related Talks at This Conference

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX/1-5 Tues PM</td>
<td>Holcomb</td>
<td>Fully Noninductive Scenario Development in DIII-D Using New Off-Axis Neutral Beam Injection</td>
</tr>
<tr>
<td>EX/3-1 Wed AM</td>
<td>Wade</td>
<td>Advances in the Physics Understanding of ELM Suppression Using Resonant Magnetic Perturbations in DIII-D</td>
</tr>
<tr>
<td>EX/5-1 Thurs AM</td>
<td>Matsunaga</td>
<td>Dynamics of Energetic Particle Driven Modes and MHD Modes in Wall-Stabilized High Beta Plasmas on JT-60U and DIII-D</td>
</tr>
<tr>
<td>EX/6-2 Thurs PM</td>
<td>Baylor</td>
<td>Experimental Demonstration of High Frequency ELM Pacing by Pellet Injection on DIII-D and Extrapolation to ITER</td>
</tr>
<tr>
<td>TH/8-2 SAT AM</td>
<td>Staebler</td>
<td>A New Paradigm for ExB Velocity Shear Suppression of Gyrokinetic Turbulence and the Momentum Pinch</td>
</tr>
<tr>
<td>EX/9-2 FRI AM</td>
<td>Hollmann</td>
<td>Control and Dissipation of Runaway Electron Beams Created during Rapid Shutdown Experiments in DIII-D</td>
</tr>
<tr>
<td>EX/10-3 Sat AM</td>
<td>Tynan</td>
<td>Zonal Flows as the Trigger Event for the L-H Transition</td>
</tr>
<tr>
<td>EX/11-4 Sat PM</td>
<td>Groebner</td>
<td>Improved Understanding of Physics Processes in Pedestal Structure, Leading to Improved Predictive Capability for ITER</td>
</tr>
</tbody>
</table>